Олимпиадные задачи из источника «Заключительный этап» для 7 класса - сложность 2-4 с решениями

На доске написаны два различных натуральных числа <i>a</i> и <i>b</i>. Меньшее из них стирают, и вместо него пишут число  <img align="absmiddle" src="/storage/problem-media/109683/problem_109683_img_2.gif">  (которое может уже оказаться нецелым). С полученной парой чисел делают ту же операцию и т.д. Докажите, что в некоторый момент на доске окажутся два равных натуральных числа.

В треугольнике <i>ABC</i>  (<i>AB > BC</i>)  проведены медиана <i>BM</i> и биссектриса <i>BL</i>. Прямая, проходящая через точку <i>M</i> параллельно <i>AB</i>, пересекает <i>BL</i> в точке <i>D</i>, а прямая, проходящая через <i>L</i> параллельно <i>BC</i>, пересекает <i>BM</i> в точке <i>E</i>. Докажите, что прямые <i>ED</i> и <i>BL</i> перпендикулярны.

На столе лежат пять часов со стрелками. Разрешается любые несколько из них перевести вперёд. Для каждых часов время, на которое при этом их перевели, назовём <i>временем перевода</i>. Требуется все часы установить так, чтобы они показывали одинаковое время. За какое наименьшее суммарное время перевода это можно гарантированно сделать?

Обозначим<i> S</i>(<i>x</i>)сумму цифр числа<i> x </i>. Найдутся ли три таких натуральных числа<i> a </i>,<i> b </i>и<i> c </i>, что<i> S</i>(<i>a+b</i>)<i><</i>5,<i> S</i>(<i>a+c</i>)<i><</i>5и<i> S</i>(<i>b+c</i>)<i><</i>5, но<i> S</i>(<i>a+b+c</i>)<i>></i>50?

Выпуклый многоугольник разбит на параллелограммы. Вершину многоугольника, принадлежащую только одному параллелограмму, назовем хорошей. Докажите, что хороших вершин не менее трех.

На множестве действительных чисел задана операция<i> * </i>, которая каждым двум числам<i> a </i>и<i> b </i>ставит в соответствие число<i> ab </i>. Известно, что равенство(<i>ab</i>)<i>c=a+b+c </i>выполняется для любых трех чисел<i> a </i>,<i> b </i>и<i> c </i>. Докажите, что<i> ab=a+b </i>.

Существуют ли 1998 различных натуральных чисел, произведение каждых двух из которых делится нацело на квадрат их разности?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка