Олимпиадные задачи из источника «Заключительный этап» для 7-8 класса - сложность 3-5 с решениями
Из промежутка (2<sup>2<i>n</i></sup>, 2<sup>3<i>n</i></sup>) выбрано 2<sup>2<i>n</i>–1</sup> + 1 нечётное число.
Докажите, что среди выбранных чисел найдутся два, квадрат каждого из которых не делится на другое.
Имеются одна красная и <i>k</i> (<i>k</i> > 1) синих ячеек, а также колода из 2<i>n</i> карт, занумерованных числами от 1 до 2<i>n</i>. Первоначально вся колода лежит в произвольном порядке в красной ячейке. Из любой ячейки можно взять верхнюю карту и переложить её либо в пустую ячейку, либо поверх карты с номером, большим на единицу. При каком наибольшем <i>n</i> можно такими операциями переложить всю колоду в одну из синих ячеек?
Гидры состоят из голов и шей (каждая шея соединяет ровно две головы). Одним ударом меча можно снести все шеи, выходящие из какой-то головы <i>A</i> гидры. Но при этом из головы <i>A</i> мгновенно вырастает по одной шее во все головы, с которыми <i>A</i> не была соединена. Геракл побеждает гидру, если ему удастся разрубить её на две несвязанные шеями части. Найдите наименьшее <i>N</i>, при котором Геракл сможет победить любую стошеюю гидру, нанеся не более чем <i>N</i> ударов.
На плоскости отмечено 6 красных, 6 синих и 6 зеленых точек, причем никакие три из отмеченных точек не лежат на одной прямой. Докажите, что сумма площадей треугольников с вершинами одного цвета составляет не более четверти суммы площадей всех треугольников с отмеченными вершинами.
Можно ли в клетках таблицы 2002×2002 расставить натуральные числа от 1 до 2002² так, чтобы для каждой клетки этой таблицы из строки или из столбца, содержащих эту клетку, можно было бы выбрать тройку чисел, одно из которых равно произведению двух других?
На плоскости взято конечное число красных и синих прямых, среди которых нет параллельных, так, что через каждую точку пересечения одноцветных прямых проходит прямая другого цвета. Докажите, что все прямые проходят через одну точку.
Сумма положительных чисел <i>a, b, c</i> равна 3. Докажите, что <img align="absmiddle" src="/storage/problem-media/109763/problem_109763_img_2.gif">
В некотором государстве было 2002 города, соединённых дорогами так, что если запретить проезд через любой из городов, то из каждого из оставшихся городов можно добраться до любого другого. Каждый год король выбирает некоторый несамопересекающийся циклический маршрут и приказывает построить новый город, соединить его дорогами со всеми городами выбранного маршрута, а все дороги этого маршрута закрыть за ненадобностью. Через несколько лет в стране не осталось ни одного несамопересекающегося циклического маршрута, проходящего по ее городам. Докажите, что в этот момент количество городов, из которых выходит ровно одна дорога, не меньше 2002.
Найдите наименьшее натуральное число, представимое в виде суммы 2002 натуральных слагаемых с одинаковой суммой цифр и в виде суммы 2003 натуральных слагаемых с одинаковой суммой цифр.
Пусть <i>O</i> – центр описанной окружности треугольника <i>ABC</i>. На сторонах <i>AB</i> и <i>BC</i> выбраны точки <i>M</i> и <i>N</i> соответственно, причём 2∠<i>MON</i> = ∠<i>AOC</i>. Докажите, что периметр треугольника <i> MBN </i> не меньше стороны <i>AC</i>.
На одной стороне угла с вершиной <i>O</i> взята точка <i>A</i>, а на другой – точки <i>B</i> и <i>C</i>, причём точка <i>B</i> лежит между <i>O</i> и <i>C</i>. Проведена окружность с центром <i>O</i><sub>1</sub>, вписанная в треугольник <i>OAB</i>, и окружность с центром <i>O</i><sub>2</sub>, касающаяся стороны <i>AC</i> и продолжений сторон <i>OA</i> и <i>OC</i> треугольника <i>AOC</i>. Докажите, что если <i>O</i><sub>1</sub><i>A = O</i><sub>2</sub><i>A</i>, то треугольник <i>ABC</i> равнобедренный.