Олимпиадные задачи по математике для 6-8 класса - сложность 3-4 с решениями
Внутри квадрата <i>ABCD</i> лежит квадрат <i>PQRS</i>. Отрезки <i>AP, BQ, CR</i> и <i>DS</i> не пересекают друг друга и стороны квадрата <i>PQRS</i>.
Докажите, что сумма площадей четырёхугольников <i>ABQP</i> и <i>CDSR</i> равна сумме площадей четырёхугольников <i>BCRQ</i> и <i>DAPS</i>.
Докажите, что внутри остроугольного треугольника существует такая точка, что основания перпендикуляров, опущенных из неё на стороны, являются вершинами равностороннего треугольника.
а) Докажите для всех <i>n</i> > 2 неравенство <img align="absmiddle" src="/storage/problem-media/98328/problem_98328_img_2.gif">б) Найдите какие-нибудь такие натуральные числа <i>a, b, c</i>, что для всех <i>n</i> > 2 <img align="absmiddle" src="/storage/problem-media/98328/problem_98328_img_3.gif">
Пусть <i>n</i> и <i>b</i> – натуральные числа. Через <i>V</i>(<i>n, b</i>) обозначим число разложений <i>n</i> на сомножители, каждый из которых больше <i>b</i> (например:
36 = 6·6 = 4·9 = 3·3·4 = 3·12, так что <i>V</i>(36, 2) = 5). Докажите, что <i>V</i>(<i>n, b</i>) < <sup><i>n</i></sup>/<sub><i>b</i></sub>.
Можно ли в таблицу 9×9 расставить такие натуральные числа, что одновременно выполняются следующие условия:
1) произведения чисел, стоящих в одной строке, одинаковы для всех строк;
2) произведения чисел, стоящих в одном столбце, одинаковы для всех столбцов;
3) среди чисел нет равных;
4) все числа не больше 1991?
Можно ли в таблицу 4×4 расставить такие натуральные числа, что одновременно выполняются следующие условия:
1) произведения чисел, стоящих в одной строке, одинаковы для всех строк;
2) произведения чисел, стоящих в одном столбце, одинаковы для всех столбцов;
3) среди чисел нет равных;
4) все числа не больше 100?
На какое максимальное число частей могут разбить координатную плоскость <i>xOy</i> графики 100 квадратных трехчлёнов вида
<i>y = a<sub>n</sub>x</i>² + <i>b<sub>n</sub>x + c<sub>n</sub></i> (<i>n</i> = 1, 2, ..., 100)?
Выпуклые четырёхугольники <i>ABCD</i> и <i>PQRS</i> вырезаны соответственно из бумаги и картона. Будем говорить, что они подходят друг к другу, если выполняются два условия:
1) картонный четырёхугольник можно наложить на бумажный так, что его вершины попадут на стороны бумажного, по одной вершине на каждую сторону;
2) если после этого перегнуть четыре образовавшихся маленьких бумажных треугольника на картонный, то они закроют весь картонный четырёхугольник в один слой.
а) Докажите, что, если четырёхугольники подходят друг к другу, то у бумажного либо две противоположные стороны параллельны,
либо диагонали перпендикулярны.
б) Докажите, что если <i>ABCD</i> – параллелограмм, то можно сделать подходящий к нему картонный четырёхуголь...
Можно ли покрыть плоскость окружностями так, чтобы через каждую точку проходило ровно 1988 окружностей?
а) Докажите, что нельзя занумеровать рёбра куба числами 1, 2, ..., 11, 12 так, чтобы для каждой вершины сумма номеров трёх выходящих из неё рёбер была одной и той же. б) Можно ли вычеркнуть одно из чисел 1, 2, ..., 12, 13 и оставшимися занумеровать рёбра куба так, чтобы выполнялось то же условие?
<img src="/storage/problem-media/73554/problem_73554_img_2.gif" width="172" height="69" vspace="10" hspace="20" align="right">В бесконечной цепочке нервных клеток каждая может находиться в одном из двух состояний: «покой» и «возбуждение». Если в данный момент клетка возбудилась, то она посылает сигнал, который через единицу времени (скажем, через одну миллисекунду) доходит до обеих соседних с ней клеток. Каждая клетка возбуждается в том и только в том случае, если к ней приходит сигнал от одной из соседних клеток; если сигналы приходят одновременно с двух сторон, то они погашаются, и клетка не возбуждается. Например, если в начальной момент времени<nobr><i>t</i> = 0</nobr>возбудить три соседние клетки...
Четыре круга, центры которых являются вершинами выпуклого четырёхугольника, целиком покрывают этот четырёхугольник. Докажите, что из них можно выбрать три круга, которые покрывают треугольник с вершинами в центрах этих кругов.
Вокруг квадрата описан параллелограмм. Докажите, что перпендикуляры, опущенные из вершин параллелограмма на стороны квадрата, образуют квадрат.
Две стороны треугольника равны 10 и 15. Докажите, что биссектриса угла между ними не больше 12.
С помощью циркуля и линейки постройте треугольник <i>ABC</i>, если заданы его наименьший угол при вершине <i>A</i> и отрезки <i>d = AB – BC</i> и <i>e = AC – BC</i>.
Дан квадрат <i>ABCD</i>. Точки <i>P</i> и <i>Q</i> лежат на сторонах <i>AB</i> и <i>BC</i> соответственно, причём <i>BP = BQ</i>. Пусть <i>H</i> – основание перпендикуляра, опущенного из точки <i>B</i> на отрезок <i>PC</i>. Докажите, что угол <i>DHQ</i> – прямой.