Олимпиадные задачи по математике

В выпуклом пятиугольнике <i>P</i> провели все диагонали, в результате чего он оказался разбитым на десять треугольников и один пятиугольник <i>P'</i>. Из суммы площадей треугольников, прилегающих к сторонам <i>P</i>, вычли площадь <i>P'</i>; получилось число <i>N</i>. Совершив те же операции с пятиугольником <i>P'</i>, получили число <i>N'</i>. Докажите, что  <i>N > N'</i>.

Внутри окружности с центром <i>O</i> отмечены точки <i>A</i> и <i>B</i> так, что  <i>OA = OB</i>.

Постройте на окружности точку <i>M</i>, для которой сумма расстояний до точек <i>A</i> и <i>B</i> наименьшая среди всех возможных.

В клетках таблицы <i>n×n</i> стоят плюсы и минусы. За один ход разрешается в произвольной строке или в произвольном столбце поменять все знаки на противоположные. Известно, что из начальной расстановки можно получить такую, при которой во всех ячейках стоят плюсы. Докажите, что этого можно добиться не более чем за <i>n</i> ходов.

Сумма цифр натурального числа <i>n</i> равна 100. Может ли сумма цифр числа <i>n</i>³ равняться 1000000?

Известно, что сумма любых двух из трёх квадратных трёхчленов  <i>x</i>² + <i>ax + b</i>,  <i>x</i>² + <i>cx + d</i>,  <i>x</i>² + <i>ex + f</i>  не имеет корней.

Может ли сумма всех этих трёхчленов иметь корни?

У каждого жителя города Тьмутаракань есть свои тараканы, не у всех поровну. Два таракана являются <i>товарищами</i>, если у них общий хозяин (в частности, каждый таракан сам себе товарищ). Что больше: среднее количество тараканов, которыми владеет житель города, или среднее количество товарищей у таракана?

Даны натуральные числа <i>x</i> и <i>y</i> из отрезка  [2, 100].  Докажите, что при некотором натуральном <i>n</i> число <i>x</i><sup>2<i><sup>n</sup></i></sup> + <i>y</i><sup>2<i><sup>n</sup></i></sup>  – составное.

Пусть <i>p</i> – простое число. Докажите, что при некотором простом <i>q</i> все числа вида  <i>n<sup>p</sup> – p</i>  не делятся на <i>q</i>.

Пусть  $x_1 \le \dots \le x_n$.  Докажите неравенство $$\bigg( \sum \limits_{i,j=1}^n |x_i-x_j|\bigg)^2 \le \frac{2 (n^2-1)}{3} \sum \limits_{i,j=1}^n (x_i-x_j)^2.$$ Докажите, что оно обращается в равенство только если числа $x_1, \dots, x_n$ образуют арифметическую прогрессию.

Дан описанный четырёхугольник <i>ABCD, P, Q</i> и <i>R</i> – основания перпендикуляров, опущенных из вершины <i>D</i> на прямые <i>BC, CA, AB</i> соответственно. Докажите, что биссектрисы углов <i>ABC, ADC</i> и диагональ <i>AC</i> пересекаются в одной точке тогда и только тогда, когда  <i>|PQ| = |QR|</i>.

Найдите все такие натуральные  (<i>a, b</i>),  что <i>a</i><sup>2</sup> делится на натуральное число  2<i>ab</i><sup>2</sup> – <i>b</i><sup>3</sup> + 1.

Дано 101-элементное подмножество <i>A</i> множества  <i>S</i> = {1, 2, ..., 1000000}.

Докажите, что для некоторых  <i>t</i><sub>1</sub>, ..., <i>t</i><sub>100</sub>  из <i>S</i> множества   <i>A<sub>j</sub></i> = {<i>x + t<sub>j</sub></i> | <i>x</i> ∈ <i>A;  j</i> = 1, ..., 100}   попарно не пересекаются.

<i>a</i> и <i>b</i> – натуральные числа. Покажите, что если  4<i>ab</i> – 1  делит  (4<i>a</i>² – 1)²,  то  <i>a = b</i>.

Пусть <i>P</i>(<i>x</i>) – многочлен степени  <i>n</i> > 1  с целыми коэффициентами, <i>k</i> – произвольное натуральное число. Рассмотрим многочлен

<i>Q<sub>k</sub></i>(<i>x</i>) = <i>P</i>(<i>P</i>(...<i>P</i>(<i>P</i>(<i>x</i>))...))  (<i>P</i> применён <i>k</i> раз). Докажите, что существует не более <i>n</i> целых чисел <i>t</i>, при которых  <i>Q<sub>k</sub></i>(<i>t</i>) = <i>t</i>.

Найдите все такие пары  (<i>x, y</i>)  целых чисел, что  1 + 2<i><sup>x</sup></i> + 2<sup>2<i>x</i>+1</sup> = <i>y</i>².

Определите наименьшее действительное число <i>M</i>, при котором неравенство   |<i>ab</i>(<i>a</i>² – <i>b</i>²) + <i>bc</i>(<i>b</i>² – <i>c</i>²) + <i>ca</i>(<i>c</i>² – <i>a</i>²)| ≤ <i>M</i>(<i>a</i>² + <i>b</i>² + <i>c</i>²)²   выполняется для любых действительных чисел <i>a, b, c</i>.

Диагональ правильного 2006-угольника <i>P</i> называется <i>хорошей</i>, если её концы делят границу <i>P</i> на две части, каждая из которых содержит нечётное число сторон. Стороны <i>P</i> также называются хорошими. Пусть <i>P</i> разбивается на треугольники 2003 диагоналями, никакие две из которых не имеют общих точек внутри <i>P</i>. Какое наибольшее число равнобедренных треугольников, каждый из которых имеет две хорошие стороны, может иметь такое разбиение?

Точка<i>I</i>– центр вписанной окружности треугольника<i>ABC</i>. Внутри треугольника выбрана точка<i>P</i>такая, что <center> <font face="Symbol">Ð</font><i>PBA</i> + <font face="Symbol">Ð</font><i>PCA</i> = <font face="Symbol">Ð</font><i>PBC</i> + <font face="Symbol">Ð</font><i>PCB.</i></center> Докажите, что<i>AP</i>≥<i>AI</i>, причём равенство выполняется тогда и только тогда, когда<i>P</i>совпадает с<i>I</i>.

Каждой стороне<i>b</i>выпуклого многоугольника<i>P</i>поставлена в соответствие наибольшая из площадей треугольников, содержащихся в<i>P</i>, одна из сторон которых совпадает с<i>b</i>. Докажите, что сумма площадей, соответствующих всем сторонам<i>P</i>, не меньше удвоенной площади многоугольника<i>P</i>.

Некоторые участники олимпиады дружат, и дружба взаимна. Назовём группу участников <i>кликой</i>, если все они дружат между собой. Их число называется <i>размером</i> клики. Известно, что максимальный размер клики чётен. Докажите, что участников можно рассадить по двум аудиториям так, что максимальные размеры клик в обеих аудиториях совпадают.

Рассмотрим 5 точек<i>A</i>,<i>B</i>,<i>C</i>,<i>D</i>,<i>E</i>так что<i>A</i><i>B</i><i>C</i><i>D</i>- параллелограмм,<i>B</i><i>C</i><i>E</i><i>D</i>лежат на одной окружности.<i>A</i>∈<i>l</i>, прямая<i>l</i>пересекает внутренность [<i>D</i><i>C</i>] в<i>F</i>и прямую<i>B</i><i>C</i>в<i>G</i>. Пусть<i>E</i><i>F</i>=<i>E</i><i>G</i>=<i>E</i><i>C</i>. Доказать, что<i>l</i>- биссектриса угла<i>D</i><i>A</i><i>B</i>...

Даны числа<i>а</i><sub>1</sub>, ...,<i>а<sub>n</sub></i>. Для 1 ≤<i>i</i>≤<i>n</i>положим

<center>

<i>d<sub>i</sub></i> = MAX { <i>a<sub>j</sub></i> | 1 ≤ <i>j</i> ≤ <i>i</i> } - MIN { <i>a<sub>j</sub></i> | <i>i</i> ≤ <i>j</i> ≤ <i>n</i> }

<i>d</i> = MAX { <i>d<sup>i</sup></i> | 1 ≤ <i>i</i> ≤ <i>n</i> } </center> а) Доказать, что для любых<i>x</i><sub>1</sub>≤<i>x</i><sub>2</sub>≤ ... ≤<i>x</i><sub>n</sub>выполняется неравенство

<center&g...

Даны два правильных тетраэдра с ребрами длины<i> <img src="/storage/problem-media/109940/problem_109940_img_2.gif"> </i>, переводящихся один в другой при центральной симметрии. Пусть<i> ϕ </i>– множество середин отрезков, концы которых принадлежат разным тетраэдрам. Найдите объем фигуры<i> ϕ </i>.

Назовём сочетанием цифр несколько цифр, записанных подряд. В стране Роботландии некоторые сочетания цифр объявлены <i>запрещёнными</i>. Известно, что запрещённых сочетаний конечное число и существует бесконечная десятичная дробь, не содержащая запрещённых сочетаний. Докажите, что существует бесконечная периодическая десятичная дробь, не содержащая запрещённых сочетаний.

Все вершины треугольника<i> ABC </i>лежат внутри квадрата<i> K </i>. Докажите, что если все их отразить симметрично относительно точки пересечения медиан треугольника<i> ABC </i>, то хотя бы одна из полученных трех точек окажется внутри<i> K </i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка