Олимпиадные задачи по математике - сложность 4 с решениями

Пусть <i>p</i> – простое число. Докажите, что при некотором простом <i>q</i> все числа вида  <i>n<sup>p</sup> – p</i>  не делятся на <i>q</i>.

Определите наименьшее действительное число <i>M</i>, при котором неравенство   |<i>ab</i>(<i>a</i>² – <i>b</i>²) + <i>bc</i>(<i>b</i>² – <i>c</i>²) + <i>ca</i>(<i>c</i>² – <i>a</i>²)| ≤ <i>M</i>(<i>a</i>² + <i>b</i>² + <i>c</i>²)²   выполняется для любых действительных чисел <i>a, b, c</i>.

Диагональ правильного 2006-угольника <i>P</i> называется <i>хорошей</i>, если её концы делят границу <i>P</i> на две части, каждая из которых содержит нечётное число сторон. Стороны <i>P</i> также называются хорошими. Пусть <i>P</i> разбивается на треугольники 2003 диагоналями, никакие две из которых не имеют общих точек внутри <i>P</i>. Какое наибольшее число равнобедренных треугольников, каждый из которых имеет две хорошие стороны, может иметь такое разбиение?

Каждой стороне<i>b</i>выпуклого многоугольника<i>P</i>поставлена в соответствие наибольшая из площадей треугольников, содержащихся в<i>P</i>, одна из сторон которых совпадает с<i>b</i>. Докажите, что сумма площадей, соответствующих всем сторонам<i>P</i>, не меньше удвоенной площади многоугольника<i>P</i>.

Некоторые участники олимпиады дружат, и дружба взаимна. Назовём группу участников <i>кликой</i>, если все они дружат между собой. Их число называется <i>размером</i> клики. Известно, что максимальный размер клики чётен. Докажите, что участников можно рассадить по двум аудиториям так, что максимальные размеры клик в обеих аудиториях совпадают.

Имеются одна красная и <i>k</i>  (<i>k</i> > 1)  синих ячеек, а также колода из 2<i>n</i> карт, занумерованных числами от 1 до 2<i>n</i>. Первоначально вся колода лежит в произвольном порядке в красной ячейке. Из любой ячейки можно взять верхнюю карту и переложить её либо в пустую ячейку, либо поверх карты с номером, большим на единицу. При каком наибольшем <i>n</i> можно такими операциями переложить всю колоду в одну из синих ячеек?

На плоскости отмечены две точки на расстоянии 1. Разрешается, измерив циркулем расстояние между двумя отмеченными точками, провести окружность с центром в любой отмеченной точке с измеренным радиусом. Линейкой разрешается провести прямую через любые две отмеченные точки. При этом отмечаются новые точки – точки пересечения построенных линий. Пусть Ц(<i>n</i>) – наименьшее число линий, проведение которых одним циркулем позволяет получить две отмеченные точки на расстоянии <i>n</i> (<i>n </i> – натуральное). ЛЦ(<i>n</i>) – то же, но циркулем и линейкой. Докажите, что последовательность  <img align="middle" src="/storage/problem-media/109598/problem_109598_img_2.gif">  неограничена.

Пусть $l_a$, $l_b$ и $l_c$ – длины биссектрис углов $A$, $B$ и $C$ треугольника $ABC$, а $m_a$, $m_b$ и $m_c$ – длины соответствующих медиан. Докажите, что $$ \frac{l_a}{m_a} + \frac{l_b}{m_b} +\frac{l_c}{m_c} > 1.$$

Натуральные числа от 1 до <i>n</i> расставляются в ряд в произвольном порядке. Расстановка называется <i>плохой</i>, если в ней можно отметить 10 чисел (не обязательно стоящих подряд), идущих в порядке убывания. Остальные расстановки называются <i>хорошими</i>. Докажите, что количество хороших расстановок не превосходит 81<sup><i>n</i></sup>.

Али-Баба и разбойник делят клад, состоящий из 100 золотых монет, разложенных в 10 кучек по 10 монет. Али-Баба выбирает 4 кучки, ставит около каждой из них по кружке, откладывает в каждую кружку по несколько монет (не менее одной, но не всю кучку). Разбойник должен как-то переставить кружки, изменив их первоначальное расположение, после чего монеты высыпаются из кружек в те кучки, около которых оказались кружки. Далее Али-Баба снова выбирает 4 кучки из 10, ставит около них кружки, и т. д. В любой момент Али-Баба может уйти, унеся с собой любые три кучки по выбору. Остальные монеты достаются разбойнику. Какое наибольшее число монет сможет унести Али-Баба, если разбойник тоже старается получить побольше монет?

Для какого наибольшего<i>n</i>можно придумать две бесконечные в обе стороны последовательности<i>A</i>и<i>B</i>такие, что любой кусок последовательности<i>B</i>длиной<i>n</i>содержится в<i>A</i>,<i>A</i>имеет период 1995, а<i>B</i>этим свойством не обладает (непериодична или имеет период другой длины)?<font size="-1">Комментарий. Последовательности могут состоять из произвольных символов. Речь идет о минимальном периоде.</font>

На табло горят несколько лампочек. Имеется несколько кнопок. Нажатие на кнопку меняет состояние лампочек, с которыми она соединена. Известно, что для любого набора лампочек найдется кнопка, соединенная с нечетным числом лампочек из этого набора. Докажите, что, нажимая на кнопки, можно погасить все лампочки.

Докажите, что в пространстве существует такое расположение 2001 выпуклого многогранника, что никакие три из многогранников не имеют общих точек, а каждые два касаются друг друга (то есть имеют хотя бы одну граничную точку, но не имеют общих внутренних точек).

Можно ли расположить бесконечное число равных выпуклых многогранников в слое, ограниченном двумя параллельными плоскостями, так чтобы ни один многогранник нельзя было вынуть из слоя, не сдвигая остальных?

Докажите, что первые цифры чисел вида 2<sup>2<sup>n</sup></sup> образуют непериодическую последовательность.

На лугу, имеющем форму квадрата, имеется круглая лунка. По лугу прыгает кузнечик. Перед каждым прыжком он выбирает вершину и прыгает по направлению к ней. Длина прыжка равна половине расстояния до этой вершины.

Сможет ли кузнечик попасть в лунку?

Дана функция   <img align="absmiddle" src="/storage/problem-media/98421/problem_98421_img_2.gif"> ,   где трёхчлены  <i>x</i>² + <i>ax + b</i>  и  <i>x</i>² + <i>cx + d</i>  не имеют общих корней. Докажите, что следующие два утверждения равносильны:

  1) найдётся числовой интервал, свободный от значений функции;

  2)  <i>f</i>(<i>x</i>) представима в виде:  <i>f</i>(<i>x</i>) = <i>f</i><sub>1</sub>(<i>f</i><sub>2</sub>(...<i>f</i><sub><i>n</i>–1</sub>(<i>f<sub>n</sub></i>(<i>x</i>))...)),  где каждая из функций  <i>f<sub>i</sub>...

а) На стол положили (с перекрытиями) несколько одинаковых салфеток, имеющих форму правильного шестиугольника, причём у всех салфеток одна сторона параллельна одной и той же прямой. Всегда ли можно вбить в стол несколько гвоздей так, что все салфетки будут прибиты, причём каждая – только одним гвоздём?

б) Тот же вопрос про правильные пятиугольники.

Плоскость разбита на выпуклые семиугольники единичного диаметра. Докажите, что любой круг радиуса 200 пересекает не менее миллиарда из них.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка