Олимпиадные задачи по математике для 11 класса - сложность 3-4 с решениями
По шоссе в одном направлении едут 10 автомобилей. Шоссе проходит через несколько населённых пунктов. Каждый из автомобилей едет с некоторой постоянной скоростью в населённых пунктах и с некоторой другой постоянной скоростью вне населённых пунктов. Для разных автомобилей эти скорости могут отличаться. Вдоль шоссе расположено 2011 флажков. Известно, что каждый автомобиль проехал мимо каждого флажка, причём около флажков обгонов не происходило. Докажите, что мимо каких-то двух флажков автомобили проехали в одном и том же порядке.
В некоторых клетках доски 10<i>× </i>10поставили<i> k </i> ладей, и затем отметили все клетки, которые бьет хотя бы одна ладья (считается, что ладья бьет клетку, на которой стоит). При каком наибольшем <i> k </i>может оказаться, что после удаления с доски любой ладьи хотя бы одна отмеченная клетка окажется не под боем?
Даны натуральные числа <i>x</i> и <i>y</i> из отрезка [2, 100]. Докажите, что при некотором натуральном <i>n</i> число <i>x</i><sup>2<i><sup>n</sup></i></sup> + <i>y</i><sup>2<i><sup>n</sup></i></sup> – составное.
В некоторых клетках доски 10×10 поставили <i>k</i> ладей, и затем отметили все клетки, которые бьёт хотя бы одна ладья (ладья бьёт и клетку, на которой стоит). При каком наибольшем <i>k</i> может оказаться, что после удаления с доски любой ладьи хотя бы одна отмеченная клетка окажется не под боем?
Имеются три комиссии бюрократов. Известно, что для каждой пары бюрократов из разных комиссий среди членов оставшейся комиссии есть ровно 10 бюрократов, которые знакомы с обоими, и ровно 10 бюрократов, которые незнакомы с обоими. Найдите общее число бюрократов в комиссиях.
Дана треугольная пирамида<i> ABCD </i>. Сфера<i> S<sub>1</sub> </i>, проходящая через точки<i> A </i>,<i> B </i>,<i> C </i>, пересекает ребра<i> AD </i>,<i> BD </i>,<i> CD </i>в точках<i> K </i>,<i> L </i>,<i> M </i>соответственно; сфера<i> S<sub>2</sub> </i>, проходящая через точки<i> A </i>,<i> B </i>,<i> D </i>, пересекает ребра<i> AC </i>,<i> BC </i>,<i> DC </i>в точках<i> P </i>,<i> Q </i>,<i> M </i>соответственно. Оказалось, что<i> KL|| PQ </i>. Докажите, что биссектрисы плоских углов<i> KMQ <...
В классе каждый болтун дружит хотя бы с одним молчуном. При этом болтун молчит, если в кабинете находится нечетное число его друзей – молчунов. Докажите, что учитель может пригласить на факультатив не менее половины класса так, чтобы все болтуны молчали.
Дан квадратный трёхчлен <i>f</i>(<i>x</i>) = <i>x</i>² + <i>ax + b</i>. Уравнение <i>f</i>(<i>f</i>(<i>x</i>)) = 0 имеет четыре различных действительных корня, сумма двух из которых равна –1. Докажите, что <i>b</i> ≤ – ¼.
Четырёхугольник <i>ABCD</i> является одновременно и вписанным, и описанным, причём вписанная в <i>ABCD</i> окружность касается его сторон <i>AB, BC, CD</i> и <i>AD</i> в точках <i>K, L, M, N</i> соответственно. Биссектрисы внешних углов <i>A</i> и <i>B</i> четырёхугольника пересекаются в точке <i>K'</i>, внешних углов <i>B</i> и <i>C</i> – в точке <i>L'</i>, внешних углов <i>C</i> и <i>D</i> – в точке <i>M'</i>, внешних углов <i>D</i> и <i>A</i> – в точке <i>N'</i>. Докажите, что прямые <i>KK', LL', MM'</i> и <i>NN'</i> проход...
На сторонах <i>AP</i> и <i>PD</i> остроугольного треугольника <i>APD</i> выбраны соответственно точки <i>B</i> и <i>C</i>. Диагонали четырёхугольника <i>ABCD</i> пересекаются в точке <i>Q</i>. Точки <i>H</i><sub>1</sub> и <i>H</i><sub>2</sub> являются ортоцентрами треугольников <i>APD</i> и <i>BPC</i> соответственно. Докажите, что если прямая <i>H</i><sub>1</sub><i>H</i><sub>2</sub> проходит через точку <i>X</i> пересечения описанных окружностей треугольников <i>ABQ</i> и <i>CDQ</i>, то она проходит и через точку <i>Y</i> пересечения описанны...
На плоскости отмечено несколько точек. Для любых трех из них существует декартова система координат (т.е. перпендикулярные оси и общий масштаб), в которой эти точки имеют целые координаты. Докажите, что существует декартова система координат, в которой все отмеченные точки имеют целые координаты.
<i>a</i> и <i>b</i> – такие различные натуральные числа, что <i>ab</i>(<i>a + b</i>) делится на <i>a</i>² + <i>ab + b</i>². Докажите, что |<i>a – b</i>| > <img src="/storage/problem-media/109735/problem_109735_img_2.gif"> .
Приведенные квадратные трёхчлены <i>f</i>(<i>x</i>) и <i>g</i>(<i>x</i>) принимают отрицательные значения на непересекающихся интервалах.
Докажите, что найдутся такие положительные числа α и β, что для любого действительного <i>x</i> будет выполняться неравенство α<i>f</i>(<i>x</i>) + β<i>g</i>(<i>x</i>) > 0.
Клетки таблицы 100×100 окрашены в 4 цвета так, что в каждой строке и в каждом столбце ровно по 25 клеток каждого цвета.
Докажите, что найдутся две строки и два столбца, все четыре клетки на пересечении которых окрашены в разные цвета.
Серединный перпендикуляр к стороне <i>AC</i> треугольника <i>ABC</i> пересекает сторону <i>BC</i> в точке <i>M</i>. Биссектриса угла <i>AMB</i> пересекает описанную окружность треугольника <i>ABC</i> в точке <i>K</i>. Докажите, что прямая, проходящая через центры вписанных окружностей треугольников <i>AKM</i> и <i>BKM</i>, перпендикулярна биссектрисе угла <i>AKB</i>.
Внутри параллелограмма <i>ABCD</i> выбрана точка <i>M</i>, а внутри треугольника <i>AMD</i> точка <i>N</i>, причём ∠<i>MNA</i> + ∠<i> MCB</i> = ∠<i>MND</i> + ∠<i>MBC</i> = 180°.
Докажите, что прямые <i>MN</i> и <i>AB</i> параллельны.
Существует ли выпуклый многоугольник, у которого длины всех сторон равны, а любые три вершины образуют тупоугольный треугольник?
Существует ли такая бесконечная возрастающая последовательность <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ... натуральных чисел, что сумма любых двух различных членов последовательности взаимно проста с суммой любых трёх различных членов последовательности?
У тетраэдра <i>ABCD</i> сумма площадей двух граней (с общим ребром <i>AB</i>) равна сумме площадей оставшихся граней (с общим ребром <i>CD</i>). Докажите, что середины рёбер <i>BC, AD, AC</i> и <i>BD</i> лежат в одной плоскости, причём эта плоскость содержит центр сферы, вписанной в тетраэдр <i>ABCD</i>.
Поле представляет собой клетчатый квадрат 41×41, в одной из клеток которого замаскирован танк. Истребитель за один выстрел обстреливает одну клетку. Если произошло попадание, танк переползает на соседнюю по стороне клетку поля, если нет – остаётся на месте. При этом после выстрела пилот истребителя не знает, произошло ли попадание. Для уничтожения танка надо попасть в него два раза. Каким наименьшим числом выстрелов можно обойтись для того, чтобы гарантировать, что танк уничтожен?
У нумизмата есть 100 одинаковых по внешнему виду монет. Он знает, что среди них 30 настоящих и 70 фальшивых монет. Кроме того, он знает, что массы всех настоящих монет одинаковы, а массы всех фальшивых – разные, причём каждая фальшивая монета тяжелее настоящей; однако точные массы монет неизвестны. Имеются двухчашечные весы без гирь, на которых можно за одно взвешивание сравнить массы двух групп, состоящих из одинакового числа монет. За какое наименьшее количество взвешиваний на этих весах нумизмат сможет гарантированно найти хотя бы одну настоящую монету?
Дан параллелограмм <i>ABCD</i>, в котором <i>AB < AC < BC</i>. Точки <i>E</i> и <i>F</i> выбраны на описанной окружности ω треугольника <i>ABC</i> так, что касательные к ω в этих точках проходят через точку <i>D</i>; при этом отрезки <i>AD</i> и <i>CE</i> пересекаются. Оказалось, что ∠<i>ABF</i> = ∠<i>DCE</i>. Найдите угол <i>ABC</i>.
В волейбольном турнире участвовали 110 команд, каждая сыграла с каждой из остальных ровно одну игру (в волейболе не бывает ничьих). Оказалось, что в любой группе из 55 команд найдётся одна, которая проиграла не более чем четырём из остальных 54 команд этой группы. Докажите, что во всём турнире найдётся команда, проигравшая не более чем четырём из остальных 109 команд.
Пусть <i>AL</i> – биссектриса треугольника <i>ABC</i>. Серединный перпендикуляр к отрезку<i>AL</i> пересекает описанную окружность Ω треугольника <i>ABC</i>, в точках <i>P</i> и <i>Q</i>. Докажите, что описанная окружность треугольника <i>PLQ</i>, касается стороны <i>BC</i>.
Петя поставил на доску 50×50 несколько фишек, в каждую клетку – не больше одной. Докажите, что у Васи есть способ поставить на свободные поля этой же доски не более 99 новых фишек (возможно, ни одной) так, чтобы по-прежнему в каждой клетке стояло не больше одной фишки, и в каждой строке и каждом столбце этой доски оказалось чётное количество фишек.