Олимпиадные задачи по математике для 11 класса - сложность 2-3 с решениями
Внутри каждой грани единичного куба выбрали по точке. Затем каждые две точки, лежащие на соседних гранях, соединили отрезком.
Докажите, что сумма длин этих отрезков не меньше, чем <img align="absmiddle" src="/storage/problem-media/116727/problem_116727_img_2.gif"> .
Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны.
Докажите, что многогранник имеет хотя бы три равных ребра.
Грани выпуклого многогранника – подобные треугольники.
Докажите, что многогранник имеет две пары равных граней (одну пару равных граней и еще одну пару равных граней).
В пространстве расположена замкнутая шестизвенная ломаная <i>ABCDEF</i>, противоположные звенья которой параллельны (<i>AB || DE, BC || EF</i> и
<i>CD || FA</i>). При этом <i>AB</i> не равно <i>DE</i>. Докажите, что все звенья ломаной лежат в одной плоскости.
В шахматном турнире участвовало 8 человек, и в итоге они набрали разное количество очков (каждый играл с каждым один раз, победа – 1 очко, ничья – 0,5 очка, поражение – 0). Шахматист, занявший второе место, набрал столько же очков, сколько четверо последних набрали вместе.
Как сыграли между собой шахматисты, занявшие третье и седьмое места?
Существуют ли два многоугольника, у которых все вершины общие, но нет ни одной общей стороны?
При каких натуральных <i>n</i> > 1 существуют такие натуральные <i>b</i><sub>1</sub>, ..., <i>b<sub>n</sub></i> (не все из которых равны), что при всех натуральных <i>k</i> число
(<i>b</i><sub>1</sub> + <i>k</i>)(<i>b</i><sub>2</sub> + <i>k</i>)...(<i>b<sub>n</sub> + k</i>) является степенью натурального числа? (Показатель степени может зависеть от <i>k</i>, но должен быть больше 1.)
В пространстве даны восемь параллельных плоскостей таких, что расстояния между каждыми двумя соседними равны. На каждой из плоскостей выбирается по точке. Могут ли выбранные точки оказаться вершинами куба.
Для натуральных чисел <i>x</i> и <i>y</i> число <i>x</i>² + <i>xy + y</i>² в десятичной записи оканчивается нулем. Докажите, что оно оканчивается хотя бы двумя нулями.
На поверхности правильного тетраэдра с ребром 1 отмечены девять точек.
Докажите, что среди этих точек найдутся две, расстояние между которыми (в пространстве) не превосходит 0,5.
Имеется 19 гирек весов 1, 2, 3, ..., 19 г: девять железных, девять бронзовых и одна золотая. Известно, что общий вес всех железных гирек на 90 г больше общего веса бронзовых. Найдите вес золотой гирьки.
Найдите геометрическое место точек, лежащих внутри куба и равноудалённых от трёх скрещивающихся рёбер <i>a, b, c</i> этого куба.
В равнобедренном треугольнике <i>ABC</i> (<i>AB = AC</i>) угол <i>A</i> равен α. На стороне <i>AB</i> взята точка <i>D</i> так, что <i>AD = <sup>AB</sup></i>/<sub><i>n</i></sub>. Найдите сумму <i>n</i> – 1 углов, под которыми виден отрезок <i>AD</i> из точек, делящих сторону <i>BC</i> на <i>n</i> равных частей:
а) при <i>n</i> = 3;
б) при произвольном <i>n</i>.
Существует ли в пространстве куб, расстояния от вершин которого до данной плоскости равны 0, 1, 2, 3, 4, 5, 6, 7?
В равностороннем треугольнике <i>ABC</i> на стороне <i>AB</i> взята точка <i>D</i> так, что <i>AD = <sup>AB</sup></i>/<sub><i>n</i></sub>.
Докажите,что сумма <i>n</i> – 1 углов, под которыми виден отрезок <i>AD</i> из точек, делящих сторону <i>BC</i> на <i>n</i> равных частей, равна 30°:
а) при <i>n</i> = 3;
б) при произвольном <i>n</i>.
Сфера касается всех рёбер тетраэдра. Соединим точки касания на парах несмежных рёбер.
Докажите, что три полученные прямые пересекаются в одной точке.
Три плоскости разрезают параллелепипед на 8 шестигранников, все грани которых – четырёхугольники (каждая плоскость пересекает свои две пары противоположных граней параллелепипеда и не пересекает две оставшиеся грани). Известно, что вокруг одного из этих шестигранников можно описать сферу. Докажите, что и вокруг каждого из них можно описать сферу.