Олимпиадные задачи по математике для 10-11 класса - сложность 2 с решениями

Четырёхугольник <i>ABCD</i> описан около окружности с центром <i>I</i>. Точки <i>M</i> и <i>N</i> – середины сторон <i>AB</i> и <i>CD</i>. Известно, что  <i>IM</i> : <i>AB = IN</i> : <i>CD</i>.

Докажите, что <i>ABCD</i> – трапеция или параллелограмм.

В треугольнике <i>ABC</i> проведены биссектрисы <i>BB</i><sub>1</sub> и <i>CC</i><sub>1</sub>. Известно, что центр описанной окружности треугольника <i>BB</i><sub>1</sub><i>C</i><sub>1</sub> лежит на прямой <i>AC</i>. Найдите угол <i>C</i> треугольника.

Четырёхугольник <i>ABCD</i> вписан в окружность, центр <i>O</i> которой лежит внутри него. Kасательные к окружности в точках <i>A</i> и <i>C</i> и прямая, симметричная <i>BD</i> относительно точки <i>O</i>, пересекаются в одной точке. Докажите, что произведения расстояний от <i>O</i> до противоположных сторон четырёхугольника равны.

Hа окружности с диаметром <i>AB</i> выбраны точки <i>C</i> и <i>D</i>. <i>XY</i> – диаметр, проходящий через середину <i>K</i> хорды <i>CD</i>. Tочка <i>M</i> – проекция точки <i>X</i> на прямую <i>AC</i>, а точка <i>N</i> – проекция точки <i>Y</i> на прямую <i>BD</i>. Докажите, что точки <i>M, N</i> и <i>K</i> лежат на одной прямой.

Хорды <i>AC</i> и <i>BD</i> окружности пересекаются в точке <i>P</i>. Перпендикуляры к <i>AC</i> и <i>BD</i> в точках <i>C</i> и <i>D</i>, соответственно пересекаются в точке <i> Q </i>.

Докажите, что прямые <i>AB</i> и <i>PQ</i> перпендикулярны.

По рёбрам выпуклого многогранника с 2003 вершинами проведена замкнутая ломаная, проходящая через каждую вершину ровно один раз. Докажите, что в каждой из частей, на которые эта ломаная делит поверхность многогранника, количество граней с нечётным числом сторон нечётно.

Тангенсы углов треугольника – целые числа. Чему они могут быть равны?

Внутри угла с вершиной <i>M</i> отмечена точка <i>A</i>. Из этой точки выпустили шар, который отразился от одной стороны угла в точке <i>B</i>, затем от другой стороны в точке <i>C</i> и вернулся в <i>A</i> ("угол падения" равен "углу отражения", см. рис.). Докажите, что центр <i>O</i> описанной окружности треугольника <i>BCM</i> лежит на прямой <i>AM</i>. (Шар считайте точкой.) <img src="/storage/problem-media/105104/problem_105104_img_2.png" width="200">

Четырёхугольник <i>ABCD</i> вписан в окружность с центром <i>O</i>. Описанные окружности треугольников <i>ABO</i> и <i>CDO</i>, пересеклись второй раз в точке <i>F</i>. Докажите, что описанная окружность треугольника <i>AFD</i> проходит через точку <i>E</i> пересечения отрезков <i>AC</i> и <i>BD</i>.

Около правильного тетраэдра <i>ABCD</i> описана сфера. На его гранях как на основаниях построены во внешнюю сторону правильные пирамиды <i>ABCD', ABDC', ACDB', BCDA'</i>, вершины которых лежат на этой сфере. Найдите угол между плоскостями <i>ABC'</i> и <i>ACD'</i>.

Высоты <i>AA'</i> и <i>BB'</i> треугольника <i>ABC</i> пересекаются в точке <i>H</i>. Точки <i>X</i> и <i>Y</i> – середины отрезков <i>AB</i> и <i>CH</i> соответственно.

Доказать, что прямые <i>XY</i> и <i>A'B'</i> перпендикулярны.

Верно ли, что сумма внутренних двугранных углов при основании треугольной пирамиды всегда меньше суммы внешних?

Даны окружность $\omega$ с центром $O$ и точка $P$ внутри нее. Пусть $X$ – произвольная точка $\omega$, прямая $XP$ и окружность $XOP$ пересекают $\omega$ во второй раз в точках $X_1$, $X_2$ соответственно. Докажите, что все прямые $X_1X_2$ параллельны друг другу.

Точка $D$ лежит на основании $AB$ равнобедренного тупоугольного треугольника $ABC$ так, что отрезок $AD$ равен радиусу описанной окружности треугольника $BCD$. Найдите угол $ACD$.

Даны окружность $\omega$ и не лежащая на ней точка $P$. Пусть $ABC$ – произвольный правильный треугольник, вписанный в $\omega$, а точки $A'$, $B'$, $C'$ – проекции $P$ на прямые $BC$, $CA$, $AB$. Найдите геометрическое место центров тяжести треугольников $A'B'C'$.

Во вписанном четырехугольнике $ABCD$ произведения противоположных сторон равны. Точка $B'$ симметрична $B$ относительно прямой $AC$. Докажите, что окружность, проходящая через точки $A$, $B'$, $D$, касается прямой $AC$.

В ряд записаны  $n > 2$  различных ненулевых чисел, причём каждое следующее больше предыдущего на одну и ту же величину. Обратные к этим $n$ числам тоже удалось записать в ряд (возможно, в другом порядке) так, что каждое следующее больше предыдущего на одну и ту же величину (возможно, иную, чем в первом случае). Чему могло равняться $n$?

Участники тараканьих бегов бегут по окружности в одном направлении, стартовав одновременно из точки $S$. Таракан $A$ бежит вдвое медленнее, чем $B$, и втрое медленнее, чем $C$. Точки $X$, $Y$ на отрезке $SC$ таковы, что $SX=XY=YC$. Прямые $AX$ и $BY$ пересекаются в точке $Z$. Найдите ГМТ пересечения медиан треугольника $ZAB$.

Три богатыря бьются со Змеем Горынычем. Илья Муромец каждым своим ударом отрубает Змею половину всех голов и ещё одну, Добрыня Никитич – треть всех голов и ещё две, Алёша Попович – четверть всех голов и ещё три. Богатыри бьют по одному в каком хотят порядке, отрубая каждым ударом целое число голов. Если ни один богатырь не может ударить (число голов получается нецелым), Змей съедает всех троих. Смогут ли богатыри отрубить все головы 41!-головому Змею?

Пусть $I$ – центр вписанной окружности неравнобедренного треугольника $ABC$. Докажите, что существует единственная пара точек $M$, $N$, лежащих соответственно на сторонах $AC$, $BC$, такая, что $\angle AIM = \angle BIN$ и $MN \parallel AB$.

Три богатыря сражаются со Змеем Горынычем. Илья Муромец каждым своим ударом отрубает половину всех голов и еще одну, Добрыня Никитич — треть всех голов и еще две, а Алёша Попович — четверть всех голов и еще три. Богатыри бьют по одному, в том порядке, в котором считают нужным. Если ни один богатырь не может ударить из-за того, что число голов получится нецелым, то Змей съедает богатырей. Смогут ли богатыри отрубить все головы $20^{20}$-головому Змею?

На стороне <i>AB</i> треугольника <i>ABC</i> выбрана точка <i>M</i>. В треугольнике <i>ACM</i> точка <i>I</i><sub>1</sub> – центр вписанной, <i>J</i><sub>1</sub> – центр вневписанной окружности, касающейся стороны <i>CM</i>. В треугольнике <i>BCM</i> точка <i>I</i><sub>2</sub> – центр вписанной, <i>J</i><sub>2</sub> центр вневписанной окружности, касающейся стороны <i>CM</i>. Докажите, что прямая, проходящая через середины отрезков <i>I</i><sub>1</sub><i>I</i><sub>2</sub> и <i>J</i><sub>1</sub><i>J</i><sub>2</sub> перп...

Аналитик сделал прогноз изменения курса доллара на каждый из 12 ближайших месяцев: на сколько процентов (число, большее 0% и меньшее 100%) изменится курс за октябрь, на сколько – за ноябрь, ..., на сколько – за сентябрь. Оказалось, что про каждый месяц он верно предсказал, на сколько процентов изменится курс, но ошибся с направлением изменения (то есть, если он предсказывал, что курс увеличится на $x$%, то курс падал на $x$%, и наоборот). При этом через 12 месяцев курс совпал с прогнозом. В какую сторону в итоге изменился курс?

Аналитик сделал прогноз изменения курса доллара на каждый из трёх ближайших месяцев: на сколько процентов (число, большее 0% и меньшее 100%) изменится курс за июль, на сколько – за август, и на сколько – за сентябрь. Оказалось, что про каждый месяц он верно предсказал, на сколько процентов изменится курс, но ошибся с направлением изменения (то есть если он предсказывал, что курс увеличится на $x%$, то курс падал на $x%$, и наоборот). При этом через три месяца курс совпал с прогнозом. В какую сторону в итоге изменился курс?

Правильный треугольник <i>ABC</i> вписан в окружность. Прямая <i>l</i>, проходящая через середину стороны <i>AB</i> и параллельная <i>AC</i>, пересекает дугу <i>AB</i>, не содержащую <i>C</i>, в точке <i>K</i>. Докажите, что отношение  <i>AK</i> : <i>BK</i>  равно отношению стороны правильного пятиугольника к его диагонали.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка