Олимпиадные задачи по математике для 6-7 класса - сложность 1-3 с решениями
Дано натуральное число <i>M</i>. Докажите, что существует число, кратное <i>M</i>, сумма цифр которого (в десятичной записи) нечётна.
Первого числа некоторого месяца в магазине было 10 видов товаров по одинаковой цене за штуку. После этого каждый день каждый товар дорожает либо в 2 раза, либо в 3 раза. Первого числа следующего месяца все цены оказались различными. Докажите, что отношение максимальной цены к минимальной больше 27.
Круг разбит на <i>n</i> секторов, в некоторых секторах стоят фишки – всего фишек <i>n</i> + 1. Затем позиция подвергается преобразованиям. Один шаг преобразования состоит в следующем: берутся какие-нибудь две фишки, стоящие в одном секторе, и переставляются в разные стороны в соседние секторы. Докажите, что через некоторое число шагов не менее половины секторов будет занято.
Докажите, что произведение 99 дробей <img align="absmiddle" src="/storage/problem-media/98085/problem_98085_img_2.gif"> где <i>k</i> = 2, 3, ..., 100, больше ⅔.
В ряд стоят 30 сапог: 15 левых и 15 правых. Докажите, что среди некоторых десяти подряд стоящих сапог левых и правых поровну.
Имеется <i>n</i> целых чисел (<i>n</i> > 1). Известно, что каждое из них отличается от произведения всех остальных на число, кратное <i>n</i>.
Докажите, что сумма квадратов этих чисел делится на <i>n</i>.
Хозяйка испекла для гостей пирог. За столом может оказаться либо <i>p</i> человек, либо <i>q</i> (<i>p</i> и <i>q</i> взаимно просты). На какое минимальное количество кусков (не обязательно равных) нужно заранее разрезать пирог, чтобы в любом случае его можно было раздать поровну?
Рассматривается набор гирь, каждая из которых весит целое число граммов, а общий вес всех гирь равен 500 граммов. Такой набор называется <i>правильным</i>, если любое тело, имеющее вес, выраженный целым числом граммов от 1 до 500, может быть уравновешено некоторым количеством гирь набора, и притом единственным образом (тело кладётся на одну чашку весов, гири – на другую; два способа уравновешивания, различающиеся лишь заменой некоторых гирь на другие того же веса, считаются одинаковыми).
а) Приведите пример правильного набора, в котором не все гири по одному грамму.
б) Сколько существует различных правильных наборов?
(Два набора различны, если некоторая гиря участвует в этих наборах не одинаковое число раз.)
Даны 103 монеты одинакового внешнего вида. Известно, что две из них – фальшивые, что все настоящие одинакового веса, что фальшивые – тоже одинакового веса, отличающегося от веса настоящих монет. Но неизвестно, в какую сторону отличаются веса фальшивых монет от настоящих. Как можно это узнать с помощью трёх взвешиваний на двухчашечных весах без гирь? (Отделить фальшивые монеты не требуется.)
Рассматривается набор гирь, каждая из которых весит целое число граммов, а общий вес всех гирь равен 200 граммов. Такой набор называется <i>правильным</i>, если любое тело, имеющее вес, выраженный целым числом граммов от 1 до 200, может быть уравновешено некоторым количеством гирь набора, и притом единственным образом (тело кладётся на одну чашку весов, гири - на другую; два способа уравновешивания, различающиеся лишь заменой некоторых гирь на другие того же веса, считаются одинаковыми).
а) Приведите пример правильного набора, в котором не все гири по одному грамму.
б) Сколько существует различных правильных наборов? (Два набора различны, если некоторая гиря участвует в этих наборах не одинаковое число раз.)
Найти шесть различных натуральных чисел, произведение любых двух из которых делится на сумму этих двух чисел.
Каждый член последовательности, начиная со второго, получается прибавлением к предыдущему числу его суммы цифр. Первым членом последовательности является единица. Встретится ли в последовательности число 123456?