Олимпиадные задачи по математике для 11 класса - сложность 2-5 с решениями

Внутри окружности с центром <i>O</i> отмечены точки <i>A</i> и <i>B</i> так, что  <i>OA = OB</i>.

Постройте на окружности точку <i>M</i>, для которой сумма расстояний до точек <i>A</i> и <i>B</i> наименьшая среди всех возможных.

Даны натуральные числа <i>x</i> и <i>y</i> из отрезка  [2, 100].  Докажите, что при некотором натуральном <i>n</i> число <i>x</i><sup>2<i><sup>n</sup></i></sup> + <i>y</i><sup>2<i><sup>n</sup></i></sup>  – составное.

Пусть <i>p</i> – простое число. Докажите, что при некотором простом <i>q</i> все числа вида  <i>n<sup>p</sup> – p</i>  не делятся на <i>q</i>.

Пусть  $x_1 \le \dots \le x_n$.  Докажите неравенство $$\bigg( \sum \limits_{i,j=1}^n |x_i-x_j|\bigg)^2 \le \frac{2 (n^2-1)}{3} \sum \limits_{i,j=1}^n (x_i-x_j)^2.$$ Докажите, что оно обращается в равенство только если числа $x_1, \dots, x_n$ образуют арифметическую прогрессию.

Дан описанный четырёхугольник <i>ABCD, P, Q</i> и <i>R</i> – основания перпендикуляров, опущенных из вершины <i>D</i> на прямые <i>BC, CA, AB</i> соответственно. Докажите, что биссектрисы углов <i>ABC, ADC</i> и диагональ <i>AC</i> пересекаются в одной точке тогда и только тогда, когда  <i>|PQ| = |QR|</i>.

Найдите все такие натуральные  (<i>a, b</i>),  что <i>a</i><sup>2</sup> делится на натуральное число  2<i>ab</i><sup>2</sup> – <i>b</i><sup>3</sup> + 1.

Дано 101-элементное подмножество <i>A</i> множества  <i>S</i> = {1, 2, ..., 1000000}.

Докажите, что для некоторых  <i>t</i><sub>1</sub>, ..., <i>t</i><sub>100</sub>  из <i>S</i> множества   <i>A<sub>j</sub></i> = {<i>x + t<sub>j</sub></i> | <i>x</i> ∈ <i>A;  j</i> = 1, ..., 100}   попарно не пересекаются.

Пусть <i>P</i>(<i>x</i>) – многочлен степени  <i>n</i> > 1  с целыми коэффициентами, <i>k</i> – произвольное натуральное число. Рассмотрим многочлен

<i>Q<sub>k</sub></i>(<i>x</i>) = <i>P</i>(<i>P</i>(...<i>P</i>(<i>P</i>(<i>x</i>))...))  (<i>P</i> применён <i>k</i> раз). Докажите, что существует не более <i>n</i> целых чисел <i>t</i>, при которых  <i>Q<sub>k</sub></i>(<i>t</i>) = <i>t</i>.

Найдите все такие пары  (<i>x, y</i>)  целых чисел, что  1 + 2<i><sup>x</sup></i> + 2<sup>2<i>x</i>+1</sup> = <i>y</i>².

Определите наименьшее действительное число <i>M</i>, при котором неравенство   |<i>ab</i>(<i>a</i>² – <i>b</i>²) + <i>bc</i>(<i>b</i>² – <i>c</i>²) + <i>ca</i>(<i>c</i>² – <i>a</i>²)| ≤ <i>M</i>(<i>a</i>² + <i>b</i>² + <i>c</i>²)²   выполняется для любых действительных чисел <i>a, b, c</i>.

Диагональ правильного 2006-угольника <i>P</i> называется <i>хорошей</i>, если её концы делят границу <i>P</i> на две части, каждая из которых содержит нечётное число сторон. Стороны <i>P</i> также называются хорошими. Пусть <i>P</i> разбивается на треугольники 2003 диагоналями, никакие две из которых не имеют общих точек внутри <i>P</i>. Какое наибольшее число равнобедренных треугольников, каждый из которых имеет две хорошие стороны, может иметь такое разбиение?

Каждой стороне<i>b</i>выпуклого многоугольника<i>P</i>поставлена в соответствие наибольшая из площадей треугольников, содержащихся в<i>P</i>, одна из сторон которых совпадает с<i>b</i>. Докажите, что сумма площадей, соответствующих всем сторонам<i>P</i>, не меньше удвоенной площади многоугольника<i>P</i>.

Некоторые участники олимпиады дружат, и дружба взаимна. Назовём группу участников <i>кликой</i>, если все они дружат между собой. Их число называется <i>размером</i> клики. Известно, что максимальный размер клики чётен. Докажите, что участников можно рассадить по двум аудиториям так, что максимальные размеры клик в обеих аудиториях совпадают.

Рассмотрим 5 точек<i>A</i>,<i>B</i>,<i>C</i>,<i>D</i>,<i>E</i>так что<i>A</i><i>B</i><i>C</i><i>D</i>- параллелограмм,<i>B</i><i>C</i><i>E</i><i>D</i>лежат на одной окружности.<i>A</i>∈<i>l</i>, прямая<i>l</i>пересекает внутренность [<i>D</i><i>C</i>] в<i>F</i>и прямую<i>B</i><i>C</i>в<i>G</i>. Пусть<i>E</i><i>F</i>=<i>E</i><i>G</i>=<i>E</i><i>C</i>. Доказать, что<i>l</i>- биссектриса угла<i>D</i><i>A</i><i>B</i>...

Даны числа<i>а</i><sub>1</sub>, ...,<i>а<sub>n</sub></i>. Для 1 ≤<i>i</i>≤<i>n</i>положим

<center>

<i>d<sub>i</sub></i> = MAX { <i>a<sub>j</sub></i> | 1 ≤ <i>j</i> ≤ <i>i</i> } - MIN { <i>a<sub>j</sub></i> | <i>i</i> ≤ <i>j</i> ≤ <i>n</i> }

<i>d</i> = MAX { <i>d<sup>i</sup></i> | 1 ≤ <i>i</i> ≤ <i>n</i> } </center> а) Доказать, что для любых<i>x</i><sub>1</sub>≤<i>x</i><sub>2</sub>≤ ... ≤<i>x</i><sub>n</sub>выполняется неравенство

<center&g...

Даны два правильных тетраэдра с ребрами длины<i> <img src="/storage/problem-media/109940/problem_109940_img_2.gif"> </i>, переводящихся один в другой при центральной симметрии. Пусть<i> ϕ </i>– множество середин отрезков, концы которых принадлежат разным тетраэдрам. Найдите объем фигуры<i> ϕ </i>.

Все вершины треугольника<i> ABC </i>лежат внутри квадрата<i> K </i>. Докажите, что если все их отразить симметрично относительно точки пересечения медиан треугольника<i> ABC </i>, то хотя бы одна из полученных трех точек окажется внутри<i> K </i>.

Существует ли такая бесконечная периодическая последовательность, состоящая из букв <i>a</i> и <i>b</i>, что при одновременной замене всех букв <i>a</i> на <i>aba</i> и букв <i>b</i> на <i>bba</i> она переходит в себя (возможно, со сдвигом)?

Дана функция<i> f</i>(<i>x</i>)<i>=<img src="/storage/problem-media/109863/problem_109863_img_2.gif"> </i>. Найдите<i>f</i>(<i>.. f</i>(<i>f</i>(19))<i>..</i>)<i></i>95<i> раз</i>.

Во всех рациональных точках действительной прямой расставлены целые числа.

Докажите, что найдётся такой отрезок, что сумма чисел на его концах не превосходит удвоенного числа в его середине.

Клетчатая фигура Ф обладает таким свойством: при любом заполнении клеток прямоугольника <i>m×n</i> числами, сумма которых положительна, фигуру Ф можно так расположить в прямоугольнике, чтобы сумма чисел в клетках прямоугольника, накрытых фигурой Ф, была положительна (фигуру Ф можно поворачивать). Докажите, что данный прямоугольник может быть покрыт фигурой Ф в несколько слоев.

На плоскости отмечены две точки на расстоянии 1. Разрешается, измерив циркулем расстояние между двумя отмеченными точками, провести окружность с центром в любой отмеченной точке с измеренным радиусом. Линейкой разрешается провести прямую через любые две отмеченные точки. При этом отмечаются новые точки – точки пересечения построенных линий. Пусть Ц(<i>n</i>) – наименьшее число линий, проведение которых одним циркулем позволяет получить две отмеченные точки на расстоянии <i>n</i> (<i>n </i> – натуральное). ЛЦ(<i>n</i>) – то же, но циркулем и линейкой. Докажите, что последовательность  <img align="middle" src="/storage/problem-media/109598/problem_109598_img_2.gif">  неограничена.

Функции  <i>f</i>(<i>x</i>) и <i>g</i>(<i>x</i>) определены на множестве целых чисел, не превосходящих по модулю 1000. Обозначим через <i>m</i> число пар  (<i>x, y</i>),  для которых

<i>f</i>(<i>x</i>) = <i>g</i>(<i>y</i>),  через <i>n</i> – число пар, для которых  <i>f</i>(<i>x</i>) = <i>f</i>(<i>y</i>),  а через <i>k</i> – число пар, для которых <i>g</i>(<i>x</i>) = <i>g</i>(<i>y</i>).  Докажите, что  2<i>m ≤ n + k</i>.

а) Известно, что область определения функции  <i>f</i>(<i>x</i>)  – отрезок  [–1, 1]  и  <i>f</i>(<i>f</i>(<i>x</i>)) = – <i>x</i>  при всех <i>x</i>, а её график является объединением конечного числа точек и интервалов. Нарисовать график такой функции <i>f</i>(<i>x</i>). б) Можно ли это сделать, если область определения функции – интервал  (–1, 1)?  Вся числовая ось?

Единичный квадрат разбит на конечное число квадратиков (размеры которых могут различаться). Может ли сумма периметров квадратиков, пересекающихся с главной диагональю, быть больше 1993? (Если квадратик пересекается с диагональю по одной точке, это тоже считается пересечением.)

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка