Олимпиадные задачи по математике для 2-11 класса - сложность 2-5 с решениями

В квадрате закрашена часть клеток, как показано на рисунке. Разрешается перегнуть квадрат по любой линии сетки, а затем разогнуть обратно. Клетки, которые при перегибании совмещаются с закрашенными, тоже закрашиваются. Можно ли закрасить весь квадрат:

  а) за 5 или менее;

  б) за 4 или менее;

  в) за 3 или менее таких перегибания?<div align="center"><img src="/storage/problem-media/116962/problem_116962_img_2.gif"></div>

Вася умножил некоторое число на 10 и получил простое число. А Петя умножил то же самое число на 15, но всё равно получил простое число.

Может ли быть так, что никто из них не ошибся?

Клетки доски размером 5×5 раскрашены в шахматном порядке (угловые клетки – чёрные). По чёрным клеткам этой доски двигается фигура – мини-слон, оставляя след на каждой клетке, где он побывал, и больше в эту клетку не возвращаясь. Мини-слон может ходить либо в свободные от следов соседние (по диагонали) клетки, либо прыгать (также по диагонали) через одну клетку, в которой оставлен след, на свободную клетку за ней. Какое наибольшее количество клеток сможет посетить мини-слон?

Квадрат разрезали на несколько частей. Переложив эти части, из них всех сложили треугольник. Затем к этим частям добавили еще одну фигурку – и оказалось, что и из нового набора фигурок можно сложить как квадрат, так и треугольник. Покажите, как такое могло бы произойти (нарисуйте, как именно эти два квадрата и два треугольника могли бы быть составлены из фигурок).

На доске написаны три натуральных числа, не превосходящих 40. За один ход можно увеличить любое из написанных чисел на число процентов, равное одному из двух оставшихся чисел, если в результате получится целое число. Существуют ли такие исходные числа, что за несколько ходов одно из чисел на доске можно сделать больше 2011?

В некоторых клетках квадрата 20×20 стоит стрелочка в одном из четырёх направлений. На границе квадрата все стрелочки смотрят вдоль границы по часовой стрелке (см. рис.). Кроме того, стрелочки в соседних (возможно, по диагонали) клетках не смотрят в противоположных направлениях. Докажите, что найдётся клетка, в которой стрелочки нет. <div align="center"><img src="/storage/problem-media/115497/problem_115497_img_2.gif"> </div>

На вертикальную ось надели несколько колес со спицами. Вид сверху изображен на левом рисунке.

<center><img align="absmiddle" src="/storage/problem-media/115380/problem_115380_img_2.gif"></center> После этого колеса повернули. Новый вид сверху изображен на рисунке справа. Могло ли колес быть:  а) три;  б) два?

Известно, что квадратные уравнения  <i>ax</i>² + <i>bx + c</i> = 0  и  <i>bx</i>² + <i>cx + a</i> = 0  (<i>a, b</i> и <i>c</i> – отличные от нуля числа) имеют общий корень.

Найдите его.

Тест состоит из 30 вопросов, на каждый есть два варианта ответа (один верный, другой нет). За одну попытку Витя отвечает на все вопросы, после чего ему сообщают, на сколько вопросов он ответил верно. Сможет ли Витя действовать так, чтобы гарантированно узнать все верные ответы не позже, чем

  а) после 29-й попытки (и ответить верно на все вопросы при 30-й попытке);

  б) после 24-й попытки (и ответить верно на все вопросы при 25-й попытке)? (Изначально Витя не знает ни одного ответа, тест всегда один и тот же.)

Существуют ли такие натуральные числа <i>a, b</i> и <i>c</i>, что у каждого из уравнений  <i>ax</i>² + <i>bx + c</i> = 0,  <i>ax</i> + <i>bx – c</i> = 0,  <i>ax</i>² – <i>bx + c</i> = 0,  <i>ax</i>² – <i>bx – c</i> = 0  оба корня – целые?

Можно ли расставить охрану вокруг точечного объекта так, чтобы ни к объекту, ни к часовым нельзя было незаметно подкрасться? (Каждый часовой стоит неподвижно и видит на 100 м строго вперёд.)

Камни лежат в трёх кучках: в одной – 51 камень, в другой – 49, а в третьей – 5. Разрешается объединять любые кучки в одну, а также разделять кучку из чётного количества камней на две равные. Можно ли получить 105 кучек по одному камню в каждой?

Вифсла, Тофсла и Хемуль играли в снежки. Первый снежок бросил Тофсла. Затем в ответ на каждый попавший в него снежок Вифсла бросал 6 снежков, Хемуль – 5, а Тофсла – 4. Через некоторое время игра закончилась. Найдите, в кого сколько снежков попало, если мимо цели пролетели 13 снежков. (В себя самого снежками не кидаются и один снежок не может попасть в двоих.)

Вася пишет на доске квадратное уравнение  <i>ax</i>² + <i>bx + c</i> = 0  с натуральными коэффициентами <i>a, b, c</i>. После этого Петя, если хочет, может заменить один или два знака "+" на "–". Если у получившегося уравнения оба корня целые, то выигрывает Вася, если же корней нет или хотя бы один из них нецелый – Петя. Может ли Вася подобрать коэффициенты уравнения так, чтобы наверняка выиграть у Пети?

Натуральное число <i>n</i> разрешается заменить на число <i>ab</i>, если  <i>a + b = n</i>  и числа <i>a</i> и <i>b</i> натуральные.

Можно ли с помощью таких замен получить из числа 22 число 2001?

Дана таблица <i>n</i>×<i>n</i>, в каждой её клетке записано число, причём все числа различны. В каждой строке отметили наименьшее число, и все отмеченные числа оказались в разных столбцах. Затем в каждом столбце отметили наименьшее число, и все отмеченные числа оказались в разных строках. Докажите, что оба раза отметили одни и те же числа. <h3>Решение</h3>Наименьшее число во всей таблице, очевидно, было отмечено оба раза. По условию ни одно из чисел, стоящих с ним в одной строке (одном столбце), не было отмечено ни разу. Поэтому оба раза было также отмечено наименьшее число в таблице, полученной из данной вычеркиванием этих строки и столбца. И так далее. <h3>Замечания</h3> 3 балла <h3>Источники и прецеденты использования</h3> &lt...

Кощей придумал для Ивана-дурака испытание. Он дал Ивану волшебную дудочку, на которой можно играть только две ноты – до и си. Для прохождения испытания Ивану нужно сыграть какую-нибудь мелодию из 300 нот на свой выбор. Но до того, как он начнёт играть, Кощей выбирает и объявляет запретными одну мелодию из пяти нот, одну – из шести нот, ..., одну – из 30 нот. Если в какой-то момент последние сыгранные ноты образуют одну из запретных мелодий, дудочка перестаёт звучать. Сможет ли Иван пройти испытание, какие бы мелодии Кощей ни объявил запретными?

Пусть X – некоторое множество целых чисел, которое можно разбить на N непересекающихся возрастающих арифметических прогрессий (бесконечных в обе стороны), а меньше чем на N – нельзя. Для любого ли такого X такое разбиение на N прогрессий единственно, если а) N = 2; б) N = 3? (Возрастающая арифметическая прогрессия – это последовательность, в которой каждое число больше своего соседа слева на одну и ту же положительную величину.)

К графикам функций $y=\cos x$ и $y=a \tan x$ провели касательные в некоторой точке их пересечения. Докажите, что эти касательные перпендикулярны друг другу для любого $a\neq0$.

Назовём натуральное число<i>хорошим</i>, если в его десятичной записи есть только нули и единицы. Пусть произведение двух хороших чисел оказалось хорошим числом. Правда ли, что тогда сумма цифр произведения равна произведению сумм цифр сомножителей? (В 44-м Турнире городов задача предлагалась в эквивалентной формулировке: <i>хорошие</i> числа были названы <i>заурядными</i>)

В параллели 7-х классов 100 учеников, некоторые из которых дружат друг с другом. 1 сентября они организовали несколько клубов, каждый из которых основали три ученика (у каждого клуба свои). Дальше каждый день в каждый клуб вступали те ученики, кто дружил хотя бы с тремя членами клуба. К 19 февраля в клубе «Гепарды» состояли все ученики параллели. Могло ли получиться так, что в клубе «Черепахи» в этот же день состояло ровно 50 учеников?

Ваня расставил в кружках различные цифры, а внутри каждого треугольника записал либо сумму, либо произведение цифр в его вершинах. Потом он стёр цифры в кружочках. Впишите в кружочки различные цифры так, чтобы условие выполнялось. <img src="/storage/problem-media/66991/problem_66991_img_2.png">

Положительные числа $a$ и $b$ таковы, что $a - b = a / b$. Что больше, $a + b$ или $a b$?

Семь городов соединены по кругу семью односторонними авиарейсами (см. рисунок). Назначьте (нарисуйте стрелочками) ещё несколько односторонних рейсов так, чтобы от любого города до любого другого можно было бы добраться, сделав не более двух пересадок. Постарайтесь сделать число дополнительных рейсов как можно меньше.<img align="center" src="/storage/problem-media/66510/problem_66510_img_2.png">

Бесконечную клетчатую доску раскрасили шахматным образом, и в каждую белую клетку вписали по отличному от нуля целому числу. После этого для каждой чёрной клетки посчитали разность: произведение того, что написано в соседних по горизонтали клетках, минус произведение того, что написано в соседних по вертикали. Могут ли все такие разности равняться 1?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка