Олимпиадные задачи по математике для 5-9 класса - сложность 1-4 с решениями
Дан правильный 17-угольник <i>A</i><sub>1</sub>... <i>A</i><sub>17</sub>. Докажите, что треугольники, образованные прямыми <i>A</i><sub>1</sub><i>A</i><sub>4</sub>, <i>A</i><sub>2</sub><i>A</i><sub>10</sub>, <i>A</i><sub>13</sub><i>A</i><sub>14</sub> и <i>A</i><sub>2</sub><i>A</i><sub>3</sub>, <i>A</i><sub>4</sub><i>A</i><sub>6</sub>, <i>A</i><sub>14</sub><i>A</i><sub>15</sub>, равны.
Вписанная и вневписанная окружности треугольника <i>ABC</i> касаются стороны <i>BC</i> в точках <i>M</i> и <i>N</i>. Известно, что ∠<i>BAC</i> = 2∠<i>MAN</i>.
Докажите, что <i>BC</i> = 2<i>MN</i>.
В треугольнике <i>ABC</i> ∠<i>A</i> = 57<°, ∠<i>B</i> = 61°, ∠<i>C</i> = 62°. Какой из двух отрезков длиннее: биссектриса угла <i>A</i> или медиана, проведённая из вершины <i>B</i>?
В треугольнике $ABC$ проведена медиана $AM$ и на ней выбрана точка $D$. Касательные, проведенные к описанной окружности треугольника $BDC$ в точках $B$ и $C$, пересекаются в точке $K$. Докажите, что $DD'$ параллельно $AK$, где $D'$ – точка, изогонально сопряжённая точке $D$ относительно треугольника $ABC$.
Даны выпуклый многоугольник $M$ и простое число $p$. Оказалось, что существует ровно $p$ способов разбить $M$ на равносторонние треугольники со стороной 1 и квадраты со стороной 1.
Докажите, что длина одной из сторон многоугольника $M$ равна $p$ – 1.
Отображение $f$ ставит в соответствие каждому невырожденному треугольнику на плоскости окружность ненулевого радиуса, причем выполняются следующие условия:
– Если произвольное подобие $\sigma$ переводит треугольник $\Delta_1$ в $\Delta_2$, то $\sigma$ переводит окружность $f(\Delta_1)$ в $f(\Delta_2)$.
– Для любых четырех точек общего положения $A$, $B$, $C$, $D$ окружности $f(ABC)$, $f(BCD)$, $f(CDA)$ и $f(DAB)$ имеют общую точку.
Докажите, что для любого треугольника $\Delta$ окружность $f(\Delta)$ совпадает с окружностью девяти точек треугольника $\Delta$ .
Пусть $AM$ – медиана неравнобедренного треугольника $ABC$, $T$ – точка касания вписанной окружности $\omega$ со стороной $BC$, $S$ – вторая точка пересечения $\omega$ с отрезком $AT$. Докажите, что вписанная окружность треугольника $\delta$, образованного прямыми $AM$, $BC$ и касательной к $\omega$ в точке $S$, касается описанной окружности треугольника $ABC$.
Назовем <i>почти выпуклым</i> несамопересекающийся многоугольник, у которого ровно один внутренний угол больше $180^\circ$.
На плоскости даны $1000000$ точек, никакие три из которых не лежат на одной прямой. Может ли оказаться, что существует ровно десять различных почти выпуклых $1000000$-угольников с вершинами в этих точках?
Для каких $k$ можно закрасить на белой клетчатой плоскости несколько (конечное число, большее нуля) клеток в чёрный цвет так, чтобы на любой клетчатой вертикали, горизонтали и диагонали либо было ровно $k$ чёрных клеток, либо вовсе не было чёрных клеток?
Любые три последовательные вершины невыпуклого многоугольника образуют прямоугольный треугольник. Обязательно ли у многоугольника найдется угол, равный $90$ или $270$ градусам?
Найдите наименьшее натуральное $k$ такое, что в любом выпуклом $1001$-угольнике сумма длин любых $k$ диагоналей не меньше суммы длин остальных диагоналей.
Четырехугольник $ABCD$ без равных и без параллельных сторон описан около окружности с центром $I$. Точки $K$, $L$, $M$ и $N$ – середины сторон $AB$, $BC$, $CD$ и $DA$. Известно, что $AB\cdot CD=4IK\cdot IM$. Докажите, что $BC\cdot AD=4IL\cdot IN$.
В некотором государстве сложение и вычитание обозначаются знаками "!" и "?", но вам неизвестно, какой знак какой операции соответствует. Каждая операция применяется к двум числам, но про вычитание вам неизвестно, вычитается левое число из правого или правое из левого. К примеру, выражение $a?b$ обозначает одно из следующих: $a - b, b - a$ или $a + b$. Вам неизвестно, как записываются числа в этом государстве, но переменные $a, b$ и скобки есть и используются как обычно. Объясните, как с помощью них и знаков "!", "?" записать выражение, которое гарантированно равно $20a - 18b$.
Четырехугольник $ABCD$ описан вокруг окружности радиуса $1$. Найдите наибольшее возможное значение величины $\frac1{AC^2}+\frac1{BD^2}$.
На плоскости дано конечное множество $S$ точек, окрашенных в красный и зеленый цвета. Назовем множество<i>разделимым</i>, если для него найдется такой треугольник, что все точки одного цвета лежат строго внутри, а все точки другого – строго вне треугольника. Известно, что любые 1000 точек из $S$ образуют разделимое множество. Обязательно ли все множество $S$ разделимо?
Правильный $n$-угольник со стороной 1 вращается вокруг другого такого же $n$-угольника, как показано на рисунке. Последовательные положения одной из его вершин в моменты, когда $n$-угольники имеют общую сторону, образуют замкнутую ломаную $\kappa$.<img src="/storage/problem-media/66681/problem_66681_img_2.png"> Докажите, что $\kappa$ ограничивает площадь, равную $6A - 2B$, где $A$, $B$ – площади правильных $n$-угольников с единичными стороной и радиусом описанной окружности соответственно.
Вершины треугольника $DEF$ лежат на разных сторонах треугольника $ABC$. Касательные, проведенные из центра вписанной в треугольник $DEF$ окружности к вневписанным окружностям треугольника $ABC$, равны. Докажите, что $4S_{DEF} \ge S_{ABC}$.
Пусть $p$ и $q$ – взаимно простые натуральные числа. Лягушка прыгает по числовой прямой, начиная в точке $0$, каждый раз либо на $p$ вправо, либо на $q$ влево. Однажды лягушка вернулась в $0$. Докажите, что для любого натурального $d < p + q$ найдутся два числа, посещенные лягушкой и отличающиеся на $d$.
Для каких $k$ можно закрасить на белой клетчатой плоскости несколько клеток (конечное число, большее нуля) в черный цвет так, чтобы на любой клетчатой вертикали, горизонтали и диагонали либо было ровно $k$ черных клеток, либо вовсе не было черных клеток?
В некотором государстве сложение и вычитание обозначаются знаками "!" и "?", но вам неизвестно, какой знак какой операции соответствует. Каждая операция применяется к двум числам, но про вычитание вам неизвестно, вычитается левое число из правого или правое из левого. К примеру, выражение <i>a</i>?b обозначает одно из следующих: <i>a</i> – <i>b</i>, <i>b</i> – <i>a</i> или <i>a</i> + <i>b</i>. Вам неизвестно, как записываются числа в этом государстве, но переменные <i>a</i>, <i>b</i> и скобки есть и используются как обычно. Объясните, как с помощью них и знаков "!" и "?" записать выражение, которое гарантированно равно 20<i>a</i> –...
Дьявол предлагает Человеку сыграть в следующую игру. Сначала Человек платит некоторую сумму <i>s</i> и называет 97 троек {<i>i, j, k</i>}, где <i>i, j, k</i> – натуральные числа, не превосходящие 100. Затем Дьявол рисует выпуклый 100-угольник <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A</i><sub>100</sub> с площадью, равной 100, и выплачивает Человеку выигрыш, равный сумме площадей 97 треугольников <i>A<sub>i</sub>A<sub>j</sub>A<sub>k</sub></i>. При каком наибольшем <i>s</i> Человеку выгодно согласиться?
Есть 101 жук, среди которых некоторые являются друзьями. Известно, что любые 100 жуков могут расположиться на плоскости так, что каждые два из них будут друзьями тогда и только тогда, когда расстояние между ними равно 1. Верно ли, что все жуки тоже могут расположиться таким же образом?
Можно ли разрезать правильный десятиугольник по нескольким диагоналям и сложить из получившихся кусков два правильных многоугольника?
Выпуклый шестиугольник <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A</i><sub>6</sub> описан около окружности ω радиуса 1. Рассмотрим три отрезка, соединяющие середины противоположных сторон шестиугольника. Для какого наибольшего <i>r</i> можно утверждать, что хотя бы один из этих отрезков не короче <i>r</i>?
Докажите, что любой выпуклый четырёхугольник можно разрезать на пять многоугольников, каждый из которых имеет ось симметрии.