Олимпиадные задачи по математике для 10 класса - сложность 1-3 с решениями

В выпуклом пятиугольнике <i>ABCDE</i>:  ∠<i>A</i> = ∠<i>C</i> = 90°,  <i>AB = AE</i>,  <i>BC = CD</i>,  <i>AC</i> = 1.  Найдите площадь пятиугольника.

В прямоугольном треугольнике <i>ABC</i> с прямым углом <i>C</i> угол <i>A</i> равен 30°, точка <i>I</i> – центр вписанной окружности <i>ABC, D</i> – точка пересечения отрезка <i>BI</i> с этой окружностью. Докажите, что отрезки <i>AI</i> и <i>CD</i> перпендикулярны.

Трапеция <i>ABCD</i> и параллелограмм <i>MBDK</i> расположены так, что стороны параллелограмма параллельны диагоналям трапеции (см. рис.). Докажите, что площадь серой части равна сумме площадей черных частей.<div align="center"><img src="/storage/problem-media/116085/problem_116085_img_2.png"></div>

Казино предлагает игру по таким правилам. Игрок ставит любое целое число долларов (но не больше, чем у него в этот момент есть) либо на орла, либо на решку. Затем подбрасывается монета. Если игрок угадал, как она упадёт, он получает назад свою ставку и столько же денег впридачу. Если не угадал — его ставку забирает казино. Если игроку не повезёт четыре раза подряд, казино присуждает ему в следующей игре утешительную победу вне зависимости от того, как упадёт монета. Джо пришёл в казино со 100 долларами. Он обязался сделать ровно пять ставок и ни разу не ставить больше 17 долларов. Какую наибольшую сумму денег он сможет гарантированно унести из казино после такой игры?

Какое наибольшее количество граней n-угольной пирамиды может быть перпендикулярно основанию?

Точки <i>M</i> и <i>N</i> – середины сторон <i>AB</i> и <i>CD</i> соответственно четырёхугольника <i>ABCD</i>. Известно, что  <i>BC || AD</i>  и  <i>AN = CM</i>.

Верно ли, что <i>ABCD</i> – параллелограмм?

Из точки <i>A</i> к окружности ω проведена касательная <i>AD</i> и произвольная секущая, пересекающая окружность в точках <i>B</i> и <i>C</i> (<i>B</i> лежит между точками <i>A</i> и <i>C</i>). Докажите, что окружность, проходящая через точки <i>C</i> и <i>D</i> и касающаяся прямой <i>BD</i>, проходит через фиксированную точку (отличную от <i>D</i>).

<i>O</i> – точка пересечения диагоналей трапеции <i>ABCD</i>. Прямая, проходящая через <i>C</i> и точку, симметричную <i>B</i> относительно <i>O</i>, пересекает основание <i>AD</i> в точке <i>K</i>. Докажите, что  <i>S<sub>AOK</sub> = S<sub>AOB</sub> + S<sub>DOK</sub></i>.

Квадрат <i>ABCD</i> и равносторонний треугольник <i>MKL</i> расположены так, как это показано на рисунке. Найдите угол <i>PQD</i>. <div align="center"><img src="/storage/problem-media/65225/problem_65225_img_2.png"></div>

В треугольнике <i>ABC</i> высота <i>AH</i> проходит через середину медианы <i>BM</i>.

Докажите, что в треугольнике <i>BMC</i> также одна из высот проходит через середину одной из медиан.

В прямоугольном треугольнике <i>ABC  CH</i> – высота, проведённая к гипотенузе. Окружность с центром <i>H</i> и радиусом <i>CH</i> пересекает больший катет <i>AC</i> в точке <i>M</i>. Точка <i>B'</i> симметрична точке <i>B</i> относительно <i>H</i>. В точке <i>B'</i> восставлен перпендикуляр к гипотенузе, который пересекает окружность в точке <i>K</i>. Докажите, что:

  а)  <i>B'M || BC</i>;

  б)  <i>AK</i> – касательная к окружности.

Прямая, проходящая через вершину <i>B</i> треугольника <i>ABC</i>, пересекает сторону <i>AC</i> в точке <i>K</i>, а описанную окружность в точке <i>M</i>.

Найдите геометрическое место центров описанных окружностей треугольников <i>AMK</i>.

Диагонали вписанного четырёхугольника <i>ABCD</i> пересекаются в точке <i>O</i>. Описанные окружности треугольников <i>AOB</i> и <i>COD</i> пересекаются в точке <i>M</i> на стороне <i>AD</i>. Докажите, что точка <i>O</i> – центр вписанной окружности треугольника <i>BMC</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка