Олимпиадные задачи по математике для 11 класса
На плоскости даны восемь точек общего положения. В ряд выписали площади всех 56 треугольников с вершинами в этих точках. Докажите, что между выписанными числами можно поставить знаки «$+$» и «$-$» так, чтобы полученное выражение равнялось нулю.
Назовем расстоянием между треугольниками $A_1A_2A_3$ и $B_1B_2B_3$ наименьшее из расстояний $A_iB_j$. Можно ли так расположить на плоскости пять треугольников, чтобы расстояние между любыми двумя из них равнялось сумме радиусов их описанных окружностей?
На плоскости отмечено пять точек. Найдите наибольшее возможное число подобных треугольников с вершинами в этих точках.
Любые три последовательные вершины невыпуклого многоугольника образуют прямоугольный треугольник. Обязательно ли у многоугольника найдется угол, равный $90$ или $270$ градусам?
Мортеза отметил на плоскости шесть точек и нашел площади всех 20 треугольников с вершинами в этих точках. Может ли оказаться, что все полученные числа целые, а их сумма равна 2019?