Олимпиадные задачи по теме «Многочлены» для 11 класса - сложность 2 с решениями
Многочлены
НазадНайдите наибольшее значение выражения <i>ab + bc + ac + abc</i>, если <i>a + b + c</i> = 12 (<i>a, b</i> и <i>с</i> – неотрицательные числа).
Дан многочлен <i>P</i>(<i>x</i>) с целыми коэффициентами. Известно, что <i>Р</i>(1) = 2013, <i>Р</i>(2013) = 1, <i>P</i>(<i>k</i>) = <i>k</i>, где <i>k</i> – некоторое целое число. Найдите <i>k</i>.
Коэффициенты квадратного уравнения <i>ax</i>² + <i>bx + c</i> = 0 удовлетворяют условию 2<i>a</i> + 3<i>b</i> + 6<i>c</i> = 0.
Докажите, что это уравнение имеет корень на интервале (0, 1).
На какую наибольшую степень двойки делится число 10<sup>20</sup> – 2<sup>20</sup>?
Для заданных значений <i>a, b, c</i> и <i>d</i> оказалось, что графики функций <img align="absmiddle" src="/storage/problem-media/116697/problem_116697_img_2.gif"> и <img align="absmiddle" src="/storage/problem-media/116697/problem_116697_img_3.gif"> имеют ровно одну общую точку. Докажите, что графики функций <img align="absmiddle" src="/storage/problem-media/116697/problem_116697_img_4.gif"> и <img align="absmiddle" src="/storage/problem-media/116697/problem_116697_img_5.gif"> также имеют ровно одну общую точку.
Даны два различных приведённых кубических многочлена <i>F</i>(<i>x</i>) и <i>G</i>(<i>x</i>). Выписали все корни уравнений <i>F</i>(<i>x</i>) = 0, <i>G</i>(<i>x</i>) = 0, <i>F</i>(<i>x</i>) = <i>G</i>(<i>x</i>). Оказалось, что выписаны восемь различных чисел. Докажите, что наибольшее и наименьшее из них не могут одновременно являться корнями многочлена <i>F</i>(<i>x</i>).
Решите уравнение в целых числах: <i>n</i><sup>4</sup> + 2<i>n</i>² + 2<i>n</i>² + 2<i>n</i> + 1 = <i>m</i>².
Решите неравенство: [<i>x</i>]·{<i>x</i>} < <i>x</i> – 1.
В турнире по волейболу <i>n</i> команд сыграли в один круг (каждая играла с каждой по одному разу, ничьих в волейболе не бывает). Пусть <i>Р</i> – сумма квадратов чисел, задающих количество побед каждой команды, <i>Q</i> – сумма квадратов чисел, задающих количество их поражений. Докажите, что <i>P = Q</i>.
Найдите значение выражения <img align="absmiddle" src="/storage/problem-media/116618/problem_116618_img_2.gif"> .
Прямая пересекает график функции <i>y = x</i>² в точках с абсциссами <i>x</i><sub>1</sub> и <i>x</i><sub>2</sub>, а ось абсцисс – в точке с абсциссой <i>x</i><sub>3</sub>. Докажите, что <img align="absmiddle" src="/storage/problem-media/116488/problem_116488_img_2.gif"> .
Найдите наибольшее значение выражения <i>x</i>²<i>y</i> – <i>y</i>²<i>x</i>, если 0 ≤ <i>x</i> ≤ 1 и 0 ≤ <i>y</i> ≤ 1.
Барон Мюнхгаузен попросил задумать непостоянный многочлен <i>P</i>(<i>x</i>) с целыми неотрицательными коэффициентами и сообщить ему только значения <i>P</i>(2) и <i>P</i>(<i>P</i>(2)). Барон утверждает, что он только по этим данным всегда может восстановить задуманный многочлен. Не ошибается ли барон?
Существуют ли такие натуральные числа <i>a, b, c, d</i>, что <i>a</i>³ + <i>b</i>³ + <i>c</i>³ + <i>d</i>³ = 100<sup>100</sup> ?
Сравните между собой наименьшие положительные корни многочленов <i>x</i><sup>2011</sup> + 2011<i>x</i> – 1 и <i>x</i><sup>2011</sup> – 2011<i>x</i> + 1.
Докажите, что ни при каких натуральных значениях <i>x</i> и <i>y</i> число <i>x</i><sup>8</sup> – <i>x</i><sup>7</sup><i>y + x</i><sup>6</sup><i>y</i>² – ... – <i>xy</i><sup>7</sup> + <i>y</i><sup>8</sup> не является простым.
Существуют ли такие натуральные <i>x</i> и <i>y</i>, что <i>x</i><sup>4</sup> – <i>y</i><sup>4</sup> = <i>x</i>³ + <i>y</i>³?
Задайте формулой какую-нибудь квадратичную функцию, график которой пересекает оси координат в вершинах прямоугольного треугольника.
При каких значениях <i>c</i> числа sin α и cos α являются корнями квадратного уравнения 5<i>x</i>² – 3<i>x + c</i> = 0 (α – некоторый угол)?
Числа <i>p</i> и <i>q</i> таковы, что параболы <i>y</i> = – 2<i>x</i>² и <i>y = x</i>² + <i>px + q</i> пересекаются в двух точках, ограничивая некоторую фигуру.
Найдите уравнение вертикальной прямой, делящей площадь этой фигуры пополам.
Найдите все положительные корни уравнения <i>x<sup>x</sup> + x</i><sup>1–<i>x</i></sup> = <i>x</i> + 1.
Найдите все <i>x</i>, при которых уравнение <i>x</i>² + <i>y</i>² + <i>z</i>² + 2<i>xyz</i> = 1 (относительно <i>z</i>) имеет действительное решение при любом <i>y</i>.
Пусть <i>P</i>(<i>x</i>) – многочлен нечётной степени. Докажите, что уравнение <i>P</i>(<i>P</i>(<i>x</i>)) = 0 имеет не меньше различных действительных корней, чем уравнение <i>P</i>(<i>x</i>) = 0.
Приведённый квадратный трёхчлен <i>f</i>(<i>x</i>) имеет два различных корня. Может ли так оказаться, что уравнение <i>f</i>(<i>f</i>(<i>x</i>)) = 0 имеет три различных корня, а уравнение <i>f</i>(<i>f</i>(<i>f</i>(<i>x</i>))) = 0 – семь различных корней?
На доске написано: <i>x</i>³ + ...<i>x</i>² + ...<i>x</i> + ... = 0. Два школьника по очереди вписывают вместо многоточий действительные числа. Цель первого – получить уравнение, имеющее ровно один действительный корень. Сможет ли второй ему помешать?