Олимпиадные задачи по теме «Многочлены» для 3-8 класса - сложность 4-5 с решениями

Докажите, что если натуральное число <i>N</i> представляется в виде суммы трёх квадратов целых чисел, делящихся на 3, то оно также представляется в виде суммы трёх квадратов целых чисел, не делящихся на 3.

Натуральные числа <i>x</i> и <i>y</i> таковы, что  2<i>x</i>² – 1 = <i>y</i><sup>15</sup>.  Докажите, что если  <i>x</i> > 1,  то <i>x</i> делится на 5.

Два многочлена  <i>P</i>(<i>x</i>) = <i>x</i><sup>4</sup> + <i>ax</i>³ + <i>bx</i>² + <i>cx + d</i>  и  <i>Q</i>(<i>x</i>) = <i>x</i>² + <i>px + q</i>  принимают отрицательные значения на некотором интервале <i>I</i> длины более 2, а вне <i>I</i> – неотрицательны. Докажите, что найдётся такая точка <i>x</i><sub>0</sub>, что  <i>P</i>(<i>x</i><sub>0</sub>) < <i>Q</i>(<i>x</i><sub>0</sub>).

Известно, что  <i>f</i>(<i>x</i>), <i>g</i>(<i>x</i>) и <i>h</i>(<i>x</i>) – квадратные трёхчлены. Может ли уравнение  <i>f</i>(<i>g</i>(<i>h</i>(<i>x</i>)))  = 0 иметь корни 1, 2, 3, 4, 5, 6, 7 и 8?

Положительные числа <i>х</i><sub>1</sub>, ..., <i>х<sub>k</sub></i> удовлетворяют неравенствам   <img align="absmiddle" src="/storage/problem-media/109199/problem_109199_img_2.gif">

  а) Докажите, что  <i>k</i> > 50.

  б) Построить пример таких чисел для какого-нибудь <i>k</i>.

  в) Найти минимальное <i>k</i>, для которого пример возможен.

Доказать, что существует бесконечно много таких составных <i>n</i>, что  3<sup><i>n</i>–1</sup> – 2<sup><i>n</i>–1</sup> кратно <i>n</i>.

У Феди есть три палочки. Если из них нельзя сложить треугольник, Федя укорачивает самую длинную из палочек на сумму длин двух других. Если длина палочки не обратилась в нуль и треугольник снова нельзя сложить, то Федя повторяет операцию, и т. д. Может ли этот процесс продолжаться бесконечно?

Обозначим через <i>T<sub>k</sub></i>(<i>n</i>) сумму произведений по <i>k</i> чисел от 1 до <i>n</i>. Например,    <i>T</i><sub>2</sub>(4) = 1·2 + 1·3 + 1·4 + 2·3 + 2·4 + 3·4.

   а) Найдите формулы для <i>T</i><sub>2</sub>(<i>n</i>) и <i>T</i><sub>3</sub>(<i>n</i>).

   б) Докажите, что <i>T<sub><i>k</i></sub></i>(<i>n</i>) является многочленом от <i>n</i> степени 2<i>k</i>.

   в) Укажите метод нахождения многочленов <i>T</i><sub><i>k</i></sub>(<i>n</i>) при  <i>k</i> = 2, 3, 4, ...  и примените его для о...

  а) <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>x</i><sub>3</sub>, <i>x</i><sub>4</sub>, <i>x</i><sub>5</sub> – положительные числа. Докажите, что квадрат суммы этих чисел не меньше учетверённой суммы произведений <i>x</i><sub>1</sub><i>x</i><sub>2</sub>, <i>x</i><sub>2</sub><i>x</i><sub>3</sub>, <i>x</i><sub>3</sub><i>x</i><sub>4</sub>, <i>x</i><sub>4</sub><i>x</i><sub>5</sub> и <i>x</i><sub>5</sub><i>x</i><sub>1</sub>.

  б) Пр...

По окружности выписаны <i>n</i> чисел  <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x</i><sub><i>n</i></sub>,  каждое из которых равно 1 или –1, причём сумма произведений соседних чисел равна нулю и вообще для каждого  <i>k</i> = 1, 2, ..., <i>n</i> – 1  сумма <i>n</i> произведений чисел, отстоящих друг от друга на <i>k</i> мест, равна нулю

(то есть  <i>x</i><sub>1</sub><i>x</i><sub>2</sub> + <i>x</i><sub>2</sub><i>x</i><sub>3</sub> + ... + <i>x<sub>n</sub>x</i><sub>1</sub> = 0,  <i>x</i><sub&gt...

Если сумма дробей   <img align="absmiddle" src="/storage/problem-media/73562/problem_73562_img_2.gif">   равна 0, то сумма дробей   <img align="absmiddle" src="/storage/problem-media/73562/problem_73562_img_3.gif">   тоже равна 0. Докажите это.

Прямая <i>l</i> делит площадь выпуклого многоугольника пополам. Докажите, что эта прямая делит проекцию данного многоугольника на прямую, перпендикулярную <i>l</i>, в отношении, не превосходящем  1 + <img width="25" height="36" align="MIDDLE" border="0" src="/storage/problem-media/56788/problem_56788_img_2.gif">.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка