Олимпиадные задачи из источника «параграф 2. Наименьшее или наибольшее расстояние»
параграф 2. Наименьшее или наибольшее расстояние
НазадНа плоскости дано <i>n</i>точек и отмечены середины всех отрезков с концами в этих точках. Докажите, что различных отмеченных точек не менее 2<i>n</i>- 3.
На плоскости дано конечное число попарно непараллельных прямых, причем через точку пересечения любых двух из них проходит еще одна из данных прямых. Докажите, что все эти прямые проходят через одну точку.
На плоскости дано конечное число точек, причем любая прямая, проходящая через две из данных точек, содержит еще одну данную точку. Докажите, что все данные точки лежат на одной прямой (Сильвестр).
Докажите, что многоугольник нельзя покрыть двумя многоугольниками, гомотетичными ему с коэффициентом <i>k</i>, где 0 <<i>k</i>< 1.
Докажите, что в любом выпуклом пятиугольнике найдутся три диагонали, из которых можно составить треугольник.
Из каждой вершины многоугольника опущены перпендикуляры на стороны, её не содержащие. Докажите, что хотя бы для одной вершины одно из оснований перпендикуляров лежит на самой стороне, а не на её продолжении.
Докажите, что по крайней мере одно из оснований перпендикуляров, опущенных из внутренней точки выпуклого многоугольника на его стороны, лежит на самой стороне, а не на ее продолжении.
На плоскости расположено несколько точек, все попарные расстояния между которыми различны. Каждую из этих точек соединяют с ближайшей. Может ли при этом получиться замкнутая ломаная?
На плоскости дано<i>n</i>$\ge$3 точек, причем не все они лежат на одной прямой. Докажите, что существует окружность, проходящая через три из данных точек и не содержащая внутри ни одной из оставшихся точек.