Олимпиадные задачи из источника «глава 21. Принцип Дирихле» для 10 класса - сложность 4 с решениями
глава 21. Принцип Дирихле
НазадДва неравных картонных диска разделены на 1965 равных секторов. На каждом из дисков произвольно выбраны 200 секторов и раскрашены в красный цвет. Меньший диск наложен на больший, так что их центры совпадают, а секторы целиком лежат один против другого. Меньший диск поворачивают на всевозможные углы, кратные${\frac{1}{1965}}$части окружности, оставляя больший диск неподвижным. Доказать, что по крайней мере при 60 положениях на дисках совпадут не более 20 красных секторов.
Назовем крестом фигуру, образованную диагоналями квадрата со стороной 1 (рис.). Докажите, что в круге радиуса 100 можно разместить лишь конечное число непересекающихся крестов. <div align="center"><img src="/storage/problem-media/58103/problem_58103_img_2.gif" border="1"></div>
Дана бесконечная клетчатая бумага и фигура, площадь которой меньше площади клетки. Докажите, что эту фигуру можно положить на бумагу, не накрыв ни одной вершины клетки.
На отрезке длиной 1 закрашено несколько отрезков, причем расстояние между любыми двумя закрашенными точками не равно 0, 1. Докажите, что сумма длин закрашенных отрезков не превосходит 0, 5.
Внутри окружности радиуса <i>n</i>расположено 4<i>n</i>отрезков длиной 1. Докажите, что можно провести прямую, параллельную или перпендикулярную данной прямой <i>l</i>и пересекающую по крайней мере два данных отрезка.
Внутри выпуклого 2<i>n</i>-угольника взята точка <i>P</i>. Через каждую вершину и точку <i>P</i>проведена прямая. Докажите, что найдется сторона 2<i>n</i>-угольника, с которой ни одна из проведенных прямых не имеет общих внутренних точек.
Каждая из девяти прямых разбивает квадрат на два четырехугольника, площади которых относятся как 2 : 3. Докажите, что по крайней мере три из этих девяти прямых проходят через одну точку.