Олимпиадные задачи из источника «1957 год» для 11 класса - сложность 3 с решениями

Дано <i>n</i> целых чисел  <i>a</i><sub>1</sub> = 1,  <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., <i>a<sub>n</sub></i>, причём   <i>a<sub>i</sub> ≤ a</i><sub><i>i</i>+1</sub> ≤ 2<i>a<sub>i</sub></i>  (<i>i</i> = 1, 2,..., <i>n</i> – 1)  и сумма всех чисел чётна. Можно ли эти числа разбить на две группы так, чтобы суммы чисел в этих группах были равны?

Доказать, что число всех цифр в последовательности1, 2, 3,..., 10<sup>k</sup>равно числу всех нулей в последовательности1, 2, 3,..., 10<sup>k + 1</sup>.

Точка<i>G</i>— центр шара, вписанного в правильный тетраэдр<i>ABCD</i>. Прямая<i>OG</i>, соединяющая<i>G</i>с точкой<i>O</i>, лежащей внутри тетраэдра, пересекает плоскости граней в точках<i>A'</i>,<i>B'</i>,<i>C'</i>,<i>D'</i>. Доказать, что<div align="CENTER"> <img width="37" height="53" align="MIDDLE" border="0" src="/storage/problem-media/78127/problem_78127_img_2.gif" alt="$\displaystyle {\frac{OA'}{GA'}}$"> + <img width="38" height="53" align="MIDDLE" border="0" src="/storage/problem-media/78127/problem_78127_img_3.gif&q...

Найти все действительные решения системы   <img align="absmiddle" src="/storage/problem-media/78126/problem_78126_img_2.gif">

Дан четырёхугольник<i>ABCD</i>. Вписать в него прямоугольник с заданными направлениями сторон.

Найти все действительные решения системы   <img align="absmiddle" src="/storage/problem-media/78121/problem_78121_img_2.gif">

Два прямоугольника положены на плоскость так, что их границы имеют восемь точек пересечения. Эти точки соединены через одну. Доказать, что площадь полученного четырёхугольника не изменится при поступательном перемещении одного из прямоугольников.

В выпуклом четырёхугольнике <i>ABCD</i> точка <i>M</i> – середина диагонали <i>AC</i>, точка <i>N</i> – середина диагонали <i>BD</i>. Прямая <i>MN</i> пересекает стороны <i>AB</i> и <i>CD</i> в точках <i>M'</i> и <i>N'</i>. Доказать, что если  <i>MM' = NN'</i>,  то  <i>BC || AD</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка