Олимпиадные задачи из источника «10 класс, 1 тур» - сложность 2-4 с решениями
10 класс, 1 тур
НазадДоказать, что любое натуральное число можно представить в виде суммы нескольких различных членов последовательности 1, 2, 3, 5, 8, 13, ...,<i>a</i><sub>n</sub>=<i>a</i><sub>n - 1</sub>+<i>a</i><sub>n - 2</sub>,....
На сторонах квадрата, как на основаниях, построены во внешнюю сторону равные равнобедренные треугольники с острым углом при вершине. Доказать, что получившуюся фигуру нельзя разбить на параллелограммы.
Даны два пересекающихся луча<i>AС</i>и<i>BD</i>. На этих лучах выбираются точки<i>M</i>и<i>N</i>(соответственно) так, что<i>AM</i>=<i>BN</i>. Найти положение точек<i>M</i>и<i>N</i>, при котором длина отрезка<i>MN</i>минимальна.
Дана система уравнений:
<img width="20" height="111" align="MIDDLE" border="0" src="/storage/problem-media/78282/problem_78282_img_2.gif"><img width="247" height="111" align="MIDDLE" border="0" src="/storage/problem-media/78282/problem_78282_img_3.gif">
Какие значения может принимать <i>x</i><sub>25</sub>?
Даны<i>n</i>карточек; на обеих сторонах каждой карточки написано по одному из чисел1, 2,...,<i>n</i>, причём так, что каждое число встречается на всех<i>n</i>карточках ровно два раза. Доказать, что карточки можно разложить на столе так, что сверху окажутся все числа:1, 2,...,<i>n</i>.