Олимпиадные задачи из источника «1964 год» для 10 класса - сложность 2-3 с решениями
В треугольнике <i>ABC</i> сторона <i>BC</i> равна полусумме двух других сторон. Через точку <i>A</i> и середины <i>B', C'</i> сторон <i>AB</i> и <i>AC</i> проведена окружность Ω и к ней из центра тяжести треугольника проведены касательные. Доказать, что одна из точек касания является центром <i>I</i> вписанной окружности треугольника <i>ABC</i>.
Из точки<i>O</i>на плоскости проведено несколько векторов, сумма длин которых равна 4. Доказать, что можно выбрать несколько векторов (или, быть может, один вектор), длина суммы которых больше 1.
Имеется бесконечное количество карточек, на каждой из которых написано какое-то натуральное число. Известно, что для любого натурального числа <i>n</i> существуют ровно <i>n</i> карточек, на которых написаны делители этого числа. Доказать, что каждое натуральное число встречается хотя бы на одной карточке.
Дана система из<i>n</i>точек на плоскости, причём известно, что для любых двух точек данной системы можно указать движение плоскости, при котором первая точка перейдёт во вторую, а система перейдёт сама в себя. Доказать, что все точки такой системы лежат на одной окружности.
В <i>n</i> мензурок налиты <i>n</i> разных жидкостей, кроме того, имеется одна пустая мензурка. Можно ли за конечное число операций составить равномерные смеси в каждой мензурке, то есть сделать так, чтобы в каждой мензурке было равно <sup>1</sup>/<sub><i>n</i></sub> от начального количества каждой жидкости, и при этом одна мензурка была бы пустой. (Мензурки одинаковые, но количества жидкостей в них могут быть разными; предполагается, что можно отмерять любой объём жидкости.)
На клетчатой бумаге начерчена замкнутая ломаная с вершинами в узлах сетки, все звенья которой равны.
Доказать, что число звеньев такой ломаной чётно.
В треугольнике<i>ABC</i>сторона<i>BC</i>равна полусумме двух других сторон. Доказать, что биссектриса угла<i>A</i>перпендикулярна отрезку, соединяющему центры вписанной и описанной окружностей треугольника.
Доказать, что любое чётное число 2<i>n</i>$\ge$0 может быть единственным образом представлено в виде2<i>n</i>= (<i>x</i>+<i>y</i>)<sup>2</sup>+ 3<i>x</i>+<i>y</i>, где<i>x</i>и<i>y</i>— целые неотрицательные числа.
В<i>n</i>стаканах достаточно большой вместительности налито поровну воды. Разрешается переливать из любого стакана в любой другой столько воды, сколько имеется в этом последнем. При каких<i>n</i>можно в конечное число шагов слить воду в один стакан?
На какое наименьшее число непересекающихся тетраэдров можно разбить куб?
Известно, что при любом целом <i>K</i> ≠ 27 число <i>a – K</i><sup>1964</sup> делится без остатка на 27 – <i>K</i>. Найти <i>a</i>.
Число<i>N</i>является точным квадратом и не заканчивается нулём. После зачёркивания у этого числа двух последних цифр снова получится точный квадрат. Найти наибольшее число<i>N</i>с таким свойством.
В четырёхугольнике <i>ABCD</i> опущены перпендикуляры AM и CP на диагональ <i>BD</i>, а также <i>BN</i> и <i>DQ</i> на диагональ <i>AC</i>.
Доказать, что четырёхугольники <i>ABCD</i> и <i>MNPQ</i> подобны.
См.<a href="http://www.problems.ru/view_problem_details_new.php?id=78518">задачу 4 для 8 класса</a>. Кроме того, доказать, что если длины отрезков<i>a</i><sub>1</sub>,...,<i>a</i><sub>6</sub>удовлетворяют соотношениям:<i>a</i><sub>1</sub>-<i>a</i><sub>4</sub>=<i>a</i><sub>5</sub>-<i>a</i><sub>2</sub>=<i>a</i><sub>3</sub>-<i>a</i><sub>6</sub>, то из этих отрезков можно построить равноугольный шестиугольник.
Известно, что при любом целом <i>K</i> ≠ 27 число <i>a – K</i>³ делится на 27 – <i>K</i>. Найти <i>a</i>.
Доказать, что произведение двух последовательных натуральных чисел не является степенью никакого целого числа.
Решить в положительных числах систему:<div align="CENTER"> $\displaystyle \left{\vphantom{ \begin{array}{rcl} x^y&=&z,\ y^z&=&x,\ z^x&=&y. \end{array} }\right.$$\displaystyle \begin{array}{rcl} x^y&=&z,\ y^z&=&x,\ z^x&=&y. \end{array}$ </div>