Олимпиадные задачи из источника «2000 год» для 8-10 класса - сложность 3-5 с решениями
<i> ABCD </i>– выпуклый четырёхугольник. Окружности, построенные на отрезках<i> AB </i>и<i> CD </i>как на диаметрах, касаются внешним образом в точке<i> M </i>, отличной от точки пересечения диагоналей четырёхугольника. Окружность, проходящая через точки<i> A </i>,<i> M </i>и<i> C </i>, вторично пересекает прямую, соединяющую точку<i> M </i>и середину<i> AB </i>в точке<i> K </i>, а окружность, проходящая через точки<i> B </i>,<i> M </i>и<i> D </i>, вторично пересекает ту же прямую в точке<i> L </i>. Докажите, что<i> |MK-ML| = |AB-CD| </i>.
Дана окружность и точка <i>A</i> внутри неё.
Найдите геометрическое место вершин <i>C</i> всевозможных прямоугольников <i>ABCD</i>, где точки <i>B</i> и <i>D</i> лежат на окружности.
Хорды <i>AC</i> и <i>BD</i> окружности с центром <i>O</i> пересекаются в точке <i>K</i>. Пусть <i>M</i> и <i>N</i> – центры описанных окружностей треугольников <i>AKB</i> и <i>CKD</i> соответственно. Докажите, что <i>OM = KN</i>.
Можно ли расположить бесконечное число равных выпуклых многогранников в слое, ограниченном двумя параллельными плоскостями, так чтобы ни один многогранник нельзя было вынуть из слоя, не сдвигая остальных?
В круговом шахматном турнире каждый участник сыграл с каждым из остальных один раз. Назовём партию <i>неправильной</i>, если выигравший её шахматист в итоге набрал очков меньше чем проигравший. (Победа даёт 1 очко, ничья – ½, поражение – 0.) Могут ли неправильные партии составлять
а) более 75% от общего количества партий в турнире;
б) более 70%?
У Феди есть три палочки. Если из них нельзя сложить треугольник, Федя укорачивает самую длинную из палочек на сумму длин двух других. Если длина палочки не обратилась в нуль и треугольник снова нельзя сложить, то Федя повторяет операцию, и т. д. Может ли этот процесс продолжаться бесконечно?
Из колоды вынули семь карт, показали всем, перетасовали и раздали Грише и Лёше по три карты, а оставшуюся карту
а) спрятали;
б) отдали Коле.
Гриша и Лёша могут по очереди сообщать вслух любую информацию о своих картах. Могут ли они сообщить друг другу свои карты так, чтобы при этом Коля не смог вычислить местонахождение ни одной из тех карт, которых он не видит? (Гриша и Лёша не договаривались о каком-либо особом способе общения; все переговоры происходят <i>открытым текстом</i>.)
Из имеющихся последовательностей {<i>b<sub>n</sub></i>} и {<i>c<sub>n</sub></i>} (возможно, {<i>b<sub>n</sub></i>} совпадает с {<i>c<sub>n</sub></i>}) разрешается получать последовательности {<i>b<sub>n</sub> + c<sub>n</sub></i>},
{<i>b<sub>n</sub> – c<sub>n</sub></i>}, {<i>b<sub>n</sub>c<sub>n</sub></i>} и {<sup><i>b<sub>n</sub></i></sup>/<sub><i>c<sub>n</sub></i></sub>} (если все члены последовательности {<i>c<sub>n</sub></i>} отличны от 0). Кроме того, из любой имеющейся последователь...
Система укреплений состоит из блиндажей. Некоторые из блиндажей соединены траншеями, причём из каждого блиндажа можно перебежать в какой-нибудь другой. В одном из блиндажей спрятался пехотинец. Пушка может одним выстрелом накрыть любой блиндаж. В каждом промежутке между выстрелами пехотинец обязательно перебегает по одной из траншей в соседний блиндаж (даже если по соседнему блиндажу только что стреляла пушка, пехотинец может туда перебежать). Назовём систему <i>надёжной</i>, если у пушки нет гарантированной стратегии поражения пехотинца (то есть такой последовательности выстрелов, благодаря которой пушка поразит пехотинца независимо от его начального местонахождения и последующих передвижений). <div align="center"><img src="/storage/problem-media/1050...
Гриша записал в клетки шахматной доски числа 1, 2, 3, ..., 63, 64 в некотором порядке. Он сообщил Лёше только сумму чисел в каждом прямоугольнике из двух клеток и добавил, что 1 и 64 лежат на одной диагонали. Докажите, что по этой информации Лёша может точно определить, в какой клетке какое число записано.
В строку выписано 23 натуральных числа (не обязательно различных). Докажите, что между ними можно так расставить скобки, знаки сложения и умножения, что значение полученного выражения будет делиться на 2000 нацело.
Какое наибольшее число коней можно расставить на доске 5×5 клеток так, чтобы каждый из них бил ровно двух других?
В колоде часть карт лежит рубашкой вниз. Время от времени Петя вынимает из колоды пачку из одной или нескольких подряд идущих карт, в которой верхняя и нижняя карты лежат рубашкой вниз, переворачивает всю пачку как одно целое и вставляет её в то же место колоды (если "пачка" состоит лишь из одной карты, то требуется только, чтобы она лежала рубашкой вниз). Докажите, что в конце концов все карты лягут рубашкой вверх, как бы ни действовал Петя.