Олимпиадные задачи из источника «2012 год» для 11 класса - сложность 3-5 с решениями
Обозначим через <i>S</i>(<i>n</i>, <i>k</i>) количество не делящихся на <i>k</i> коэффициентов разложения многочлена (<i>x</i> + 1)<i><sup>n</sup></i> по степеням <i>x</i>.
а) Найдите <i>S</i>(2012, 3).
б) Докажите, что <i>S</i>(2012<sup>2011</sup>, 2011) делится на 2012.
После обеда на <i>прозрачной</i> квадратной скатерти остались тёмные пятна общей площади <i>S</i>. Оказалось, что если сложить скатерть пополам вдоль любой из двух линий, соединяющих середины противоположных её сторон, или же вдоль одной из двух её диагоналей, то общая видимая площадь пятен будет равна <i>S</i><sub>1</sub>. Если же сложить скатерть пополам вдоль другой её диагонали, то общая видимая площадь пятен останется равна <i>S</i>. Какое наименьшее значение может принимать величина <i>S</i><sub>1</sub> : <i>S</i>?
Учитель написал на доске в алфавитном порядке все возможные 2<i><sup>n</sup></i> слов, состоящих из <i>n</i> букв А или Б. Затем он заменил каждое слово на произведение <i>n</i> множителей, исправив каждую букву А на <i>x</i>, а каждую букву Б – на (1 – <i>x</i>), и сложил между собой несколько первых из этих многочленов от <i>x</i>. Докажите, что полученный многочлен представляет собой либо постоянную, либо возрастающую на отрезке [0, 1] функцию от <i>x</i>.
Про бесконечный набор прямоугольников известно, что в нём для любого числа <i>S</i> найдутся прямоугольники суммарной площади больше <i>S</i>.
а) Обязательно ли этим набором можно покрыть всю плоскость, если при этом допускаются наложения?
б) Тот же вопрос, если дополнительно известно, что все прямоугольники в наборе являются квадратами.
Для <i>n</i> = 1, 2, 3 будем называть числом <i>n</i>-го типа любое число, которое либо равно 0, либо входит в бесконечную геометрическую прогрессию
1, (<i>n</i> + 2), (<i>n</i> + 2)², ..., либо является суммой нескольких различных её членов. Докажите, что любое натуральное число можно представить в виде суммы числа первого типа, числа второго типа и числа третьего типа.
На собрание пришло <i>n</i> человек (<i>n</i> > 1). Оказалось, что у каждых двух из них среди собравшихся есть ровно двое общих знакомых.
а) Докажите, что каждый из них знаком с одинаковым числом людей на этом собрании.
б) Покажите, что <i>n</i> может быть больше 4.