Олимпиадные задачи из источника «2012 год» для 5-11 класса - сложность 3-5 с решениями
Обозначим через <i>S</i>(<i>n</i>, <i>k</i>) количество не делящихся на <i>k</i> коэффициентов разложения многочлена (<i>x</i> + 1)<i><sup>n</sup></i> по степеням <i>x</i>.
а) Найдите <i>S</i>(2012, 3).
б) Докажите, что <i>S</i>(2012<sup>2011</sup>, 2011) делится на 2012.
После обеда на <i>прозрачной</i> квадратной скатерти остались тёмные пятна общей площади <i>S</i>. Оказалось, что если сложить скатерть пополам вдоль любой из двух линий, соединяющих середины противоположных её сторон, или же вдоль одной из двух её диагоналей, то общая видимая площадь пятен будет равна <i>S</i><sub>1</sub>. Если же сложить скатерть пополам вдоль другой её диагонали, то общая видимая площадь пятен останется равна <i>S</i>. Какое наименьшее значение может принимать величина <i>S</i><sub>1</sub> : <i>S</i>?
Учитель написал на доске в алфавитном порядке все возможные 2<i><sup>n</sup></i> слов, состоящих из <i>n</i> букв А или Б. Затем он заменил каждое слово на произведение <i>n</i> множителей, исправив каждую букву А на <i>x</i>, а каждую букву Б – на (1 – <i>x</i>), и сложил между собой несколько первых из этих многочленов от <i>x</i>. Докажите, что полученный многочлен представляет собой либо постоянную, либо возрастающую на отрезке [0, 1] функцию от <i>x</i>.
Про бесконечный набор прямоугольников известно, что в нём для любого числа <i>S</i> найдутся прямоугольники суммарной площади больше <i>S</i>.
а) Обязательно ли этим набором можно покрыть всю плоскость, если при этом допускаются наложения?
б) Тот же вопрос, если дополнительно известно, что все прямоугольники в наборе являются квадратами.
Для <i>n</i> = 1, 2, 3 будем называть числом <i>n</i>-го типа любое число, которое либо равно 0, либо входит в бесконечную геометрическую прогрессию
1, (<i>n</i> + 2), (<i>n</i> + 2)², ..., либо является суммой нескольких различных её членов. Докажите, что любое натуральное число можно представить в виде суммы числа первого типа, числа второго типа и числа третьего типа.
На собрание пришло <i>n</i> человек (<i>n</i> > 1). Оказалось, что у каждых двух из них среди собравшихся есть ровно двое общих знакомых.
а) Докажите, что каждый из них знаком с одинаковым числом людей на этом собрании.
б) Покажите, что <i>n</i> может быть больше 4.
Рассмотрим граф, у которого вершины соответствуют всевозможным трёхэлементным подмножествам множества {1, 2, 3, ..., 2<i><sup>k</sup></i>}, а рёбра проводятся между вершинами, которые соответствуют подмножествам, пересекающимся ровно по одному элементу. Найдите минимальное количество цветов, в которые можно раскрасить вершины графа так, чтобы любые две вершины, соединённые ребром, были разного цвета.
Дан остроугольный треугольник <i>ABC</i>. Для произвольной прямой <i>l</i> обозначим через <i>l<sub>a</sub></i>, <i>l<sub>b</sub></i>, <i>l<sub>c</sub></i> прямые, симметричные <i>l</i> относительно сторон треугольника, а через <i>I<sub>l</sub></i> – центр вписанной окружности треугольника, образованного этими прямыми. Найдите геометрическое место точек <i>I<sub>l</sub></i>.
По кругу разложено чётное количество груш. Массы любых двух соседних отличаются не более чем на 1 г. Докажите, что можно все груши объединить в пары и разложить по кругу таким образом, чтобы массы любых двух соседних пар тоже отличались не более чем на 1 г.
Из плоскости вырезали равносторонний треугольник.
Можно ли оставшуюся часть плоскости замостить треугольниками, любые два из которых подобны, но не гомотетичны?
а) В футбольном турнире в один круг участвовало 75 команд. За победу в матче команда получала 3 очка, за ничью 1 очко, за поражение 0 очков. Известно, что каждые две команды набрали различное количество очков. Найдите наименьшую возможную разность очков у команд, занявших первое и последнее места.б) Тот же вопрос для <i>n</i> команд.
Дан треугольник <i>ABC</i>. Прямая <i>l</i> касается вписанной в него окружности. Обозначим через <i>l<sub>a</sub>, l<sub>b</sub>, l<sub>c</sub></i> прямые, симметричные <i>l</i> относительно биссектрис внешних углов треугольника. Докажите, что треугольник, образованный этими прямыми, равен треугольнику <i>ABC</i>.
В клетках таблицы <i>m</i>×<i>n</i> расставлены числа. Оказалось, что в каждой клетке записано количество соседних с ней по стороне клеток, в которых стоит единица. При этом не все числа – нули. При каких числах <i>m</i> и <i>n</i>, больших 100, такое возможно?
Рациональные числа <i>x, y</i> и <i>z</i> таковы, что все числа <i>x + y</i>² + <i>z</i>², <i>x</i>² + <i>y</i> + <i>z</i>² и <i>x</i>² + <i>y</i>² + <i>z</i> целые. Докажите, что число 2<i>x</i> целое.
В параллелограмме <i>ABCD</i> опустили перпендикуляр <i>BH</i> на сторону <i>AD</i>. На отрезке <i>BH</i> отметили точку <i>M</i>, равноудалённую от точек <i>C</i> и <i>D</i>. Пусть точка <i>K</i> – середина стороны <i>AB</i>. Докажите, что угол <i>MKD</i> прямой.