Олимпиадные задачи из источника «2025 год» - сложность 3 с решениями
Фокусник вместе со своим помощником собираются показать следующий фокус. Помощник надевает фокуснику повязку на глаза, приглашает на сцену случайного зрителя из зала и просит его написать последовательность из нулей и единиц длины $2^{2025}$. Затем помощник верно называет фокуснику номер и значение некоторого одного члена последовательности. Задача фокусника – отгадать $2025$ других членов последовательности (то есть назвать их номера и значения). Докажите, что они могут заранее договориться так, чтобы фокус удался.
Назовём подмножество $A$ плоскости<i>похожим на прямую</i>, если для некоторой прямой $\ell$ той же плоскости найдётся такое взаимно однозначное соответствие $f\colon\ell\to A$, что для всяких двух точек $X,Y$ на прямой $\ell$ длина отрезка $XY$ отличается от длины отрезка $f(X)f(Y)$ не более, чем на $1$. Верно ли, что любое подмножество плоскости, похожее на прямую, лежит между некоторыми двумя параллельными прямыми?
Пусть $O$ – центр описанной окружности остроугольного треугольника $ABC$. На стороне $BC$ отметили точку $D$. Окружности, описанные около треугольников $BOD$ и $COD$, повторно пересекают отрезки $AB$ и $AC$ в точках $X$ и $Y$ соответственно. Докажите, что из отрезков $BX$, $XY$ и $YC$ можно сложить треугольник.
Даны две треугольные пирамиды с общим основанием $ABC$. Их вершины $S$ и $R$ лежат по разные стороны от плоскости $ABC$. Все боковые рёбра одной пирамиды параллельны соответствующим боковым граням другой. Докажите, что объём одной пирамиды вдвое больше объёма другой.
Существуют ли такие натуральные числа $m$ и $n$ и такой многочлен $f(x)$ с целыми коэффициентами, что $f(m)$ не делится на $n$, но $f(p^k)$ делится на $n$ для любого простого числа $p$ и любого натурального $k$?
В Камелот съехались $100$ рыцарей Круглого Стола, любые два из которых либо дружат, либо враждуют (дружба и вражда взаимны). Фея Моргана может выбрать любого рыцаря и сделать так, что он поссорится со всеми своими друзьями и при этом подружится со всеми своими врагами. Накладывать это заклинание Моргана может сколько угодно раз. Докажите, что она сможет добиться того, чтобы в итоге образовались такие две группы по $5$ рыцарей, что каждый рыцарь из первой пятёрки будет враждовать с каждым рыцарем из второй.
Высоты $AA_1$, $BB_1$, $CC_1$ остроугольного треугольника $ABC$ пересекаются в точке $H$. Биссектриса угла $CBH$ пересекает отрезок $CH$ в точке $X$, биссектриса угла $BCH$ пересекает отрезок $BH$ в точке $Y$. Обозначим величину угла $XA_1Y$ через $\alpha$. Аналогично определим $\beta$ и $\gamma$. Найдите значение суммы $\alpha + \beta + \gamma$.<img height="250" src="/storage/problem-media/67454/problem_67454_img_2.png">
У хозяйки есть кусок мяса, которым она хочет накормить трёх котиков. Раз в несколько секунд хозяйка отрезает кусочек мяса и скармливает его одному из котиков на свой выбор, причём каждый кусочек должен составлять одну и ту же долю куска, от которого его отрезают. Через некоторое время хозяйка убирает остаток мяса в холодильник. Может ли она скормить котикам поровну мяса?
Каждая клетка квадрата $100\times 100$ покрашена либо в белый, либо в чёрный цвет. Оказалось, что у каждой белой клетки ровно две соседних с ней по стороне клетки покрашены в белый цвет, а у каждой чёрной клетки ровно две соседних с ней по стороне клетки покрашены в чёрный цвет. Найдите максимальное возможное количество чёрных клеток.
Правильный треугольник разрезан на треугольники, каждый из которых либо прямоугольный, либо равнобедренный. Все прямоугольные треугольники равны друг другу, все равнобедренные – тоже. Обязательно ли все углы равнобедренных треугольников кратны $30^\circ$?
По кругу стоят 50 чисел (необязательно целых). Известно, что произведение любых 25 чисел отличается от произведения 25 остальных не более чем на 2. Докажите, что какие-то два соседних числа отличаются не более чем на 2.