Олимпиадные задачи из источника «2000/01» - сложность 1 с решениями
В выпуклом четырёхугольнике <i>ABCD</i> точки <i>E, F</i> и <i>G</i> – середины сторон <i>AB, BC</i> и <i>AD</i> соответственно, причём <i>GE</i> ⊥ <i>AB</i>, <i>GF</i> ⊥ <i>BC</i>. Найдите угол <i>ACD</i>.
На координатной плоскости изобразите все точки, координаты которых являются решениями уравнения: <i>y</i>² – |<i>y</i>| = <i>x</i>² – |<i>x</i>|.
Назовём натуральное число "замечательным", если оно – самое маленькое среди всех натуральных чисел с такой же, как у него, суммой цифр.
Сколько существует трёхзначных замечательных чисел?
Биссектриса треугольника делит одну из его сторон на отрезки 3 см и 5 см. В каких границах изменяется периметр треугольника?
Дано число: 123456789101112... . Какая цифра стоит на 2000-м месте?
Являются ли подобными два прямоугольника: картина в рамке и картина без рамки, если ширина рамки всюду одинакова (см. рис.)? <center><img src="/storage/problem-media/86509/problem_86509_img_2.png"></center>
Решая задачу: "Какое значение принимает выражение <i>x</i><sup>2000</sup> + <i>x</i><sup>1999</sup> + <i>x</i><sup>1998</sup> + 1000<i>x</i><sup>1000</sup> + 1000<i>x</i><sup>999</sup> + 1000<i>x</i><sup>998</sup> + 2000<i>x</i>³ + 2000<i>x</i>² + 2000<i>x</i> + 3000
(<i>x</i> – действительное число), если <i>x</i>² + <i>x</i> + 1 = 0?", Вася получил ответ 3000. Прав ли Вася?
Рассмотрим все моменты времени, когда часовая и минутная стрелки часов лежат на одной прямой, образуя развёрнутый угол.
Найдутся ли среди таких прямых две взаимно перпендикулярные?
К окружности с диаметром<i>АС</i>проведена касательная<i>ВС</i>. Отрезок<i>АВ</i>пересекает окружность в точке<i>D</i>. Через точку<i>D</i>проведена еще одна касательная к окружности, пересекающая отрезок<i>ВС</i>в точке<i>K</i>. В каком отношении точка<i>K</i>разделила отрезок<i>ВС</i>?
Решите неравенство: |<i>x</i>+ 2000| < |<i>x</i>- 2001|.
На острове проживают 1234 жителя, каждый из которых либо рыцарь (который всегда говорит правду) либо лжец (который всегда лжёт). Однажды все жители острова разбились на пары, и каждый про своего соседа по паре сказал: "Он – рыцарь!", либо "Он – лжец!". Могло ли в итоге оказаться, что тех и других фраз произнесено поровну?
Дана пирамида<i>АВСD</i>(см. рис.). Известно, что $\triangle$<i>ADB</i>=$\triangle$<i>DBC</i>; $\triangle$<i>ABD</i>=$\triangle$<i>BDC</i>; $\triangle$<i>BAD</i>=$\triangle$<i>ABC</i>. Найдите площадь поверхности пирамиды (сумму площадей четырех треугольников), если площадь треугольника<i>АВС</i>равна 10 см<sup>2</sup>. <div align="center"><img src="/storage/problem-media/86491/problem_86491_img_3.gif"> </div>
Вася задумал три различные цифры, отличные от нуля. Петя записал все возможные двузначные числа, в десятичной записи которых использовались только эти цифры. Сумма записанных чисел равна 231. Найдите цифры, задуманные Васей.
В клетках шахматной доски записаны в произвольном порядке натуральные числа от 1 до 64 (в каждой клетке записано ровно одно число и каждое число записано ровно один раз). Может ли в ходе шахматной партии сложиться ситуация, когда сумма чисел, записанных в клетках, занятых фигурами, ровно вдвое меньше суммы чисел, записанных в клетках, свободных от фигур?
Через вершины <i>А</i> и <i>С</i> треугольника <i>АВС</i> проведены прямые, перпендикулярные биссектрисе угла <i>АВС</i>. Они пересекают прямые <i>СВ</i> и <i>ВА</i> в точках <i>К</i> и <i>М</i> соответственно. Найдите длину <i>АВ</i>, если <i>ВМ</i> = 8 см, <i>KC</i> = 1 см и <i>АВ</i> > <i>ВС</i>.
Докажите, что ½ – ⅓ + ¼ – ⅕ + ... + <sup>1</sup>/<sub>98</sub> – <sup>1</sup>/<sub>99</sub> + <sup>1</sup>/<sub>100</sub> > ⅕.
Назовем натуральное число "замечательным", если оно самое маленькое среди натуральных чисел с такой же, как у него, суммой цифр. Чему равна сумма цифр две тысячи первого замечательного числа?
Куб сложен из 27 одинаковых кубиков (см. рис.). Сравните площадь поверхности этого куба и площадь поверхности фигуры, которая получится, если из него вынуть все "угловые" кубики. <center><img src="/storage/problem-media/86485/problem_86485_img_2.gif"></center>
При каких значениях <i>m</i> уравнения <i>mx</i> – 1000 = 1001 и 1001<i>x = m</i> – 1000<i>x</i> имеют общий корень?