Олимпиадные задачи из источника «2011/12» для 8 класса - сложность 1-2 с решениями
Натуральные числа <i>а, b, c</i> и <i>d</i> таковы, что <i>ab = cd</i>. Может ли число <i>a + b + c + d</i> оказаться простым?
На стороне <i>ВС</i> равностороннего треугольника <i>АВС</i> отмечены точки <i>K</i> и <i>L</i> так, что <i>BK = KL = LC</i>, а на стороне <i>АС</i> отмечена точка <i>М</i> так,
что <i>АМ</i> = ⅓ <i>AC</i>. Найдите сумму углов <i>AKM</i> и <i>ALM</i>.
Для чисел <i>а, b</i> и <i>с</i>, отличных от нуля, выполняется равенство: <i>a</i>²(<i>b + c – a</i>) = <i>b</i>²(<i>c + a – b</i>) = <i>c</i>²(<i>a + b – c</i>). Следует ли из этого, что <i>а = b = c</i>?
В коробке лежат 2011 белых и 2012 чёрных шаров. Наугад вытаскиваются два шара. Если они одного цвета, то их выкидывают и кладут в коробку чёрный шар. Если они разного цвета, то выкидывают чёрный, а белый кладут обратно. Процесс продолжается до тех пор, пока в коробке не останется один шар. Какого он цвета?
В прямоугольнике <i>АВСD</i> точка <i>Р</i> – середина стороны <i>АВ</i>, а точка <i>Q</i> – основание перпендикуляра, опушенного из вершины <i>С</i> на <i>PD</i>.
Докажите, что <i>BQ = BC</i>.
Петя ехал из Петрова в Николаево, а Коля – наоборот. Они встретились, когда Петя проехал 10 км и еще четверть оставшегося ему до Николаева пути, а Коля проехал 20 км и треть оставшегося ему до Петрова пути. Какое расстояние между Петрово и Николаево?
Является ли простым число 2011·2111 + 2500?
Разрежьте квадрат 4×4 по линиям сетки на 9 прямоугольников так, чтобы равные прямоугольники не соприкасались ни сторонами, ни вершинами.
На рисунке изображен график функции <i>у = kx + b</i> . Сравните |<i>k</i>| и |<i>b</i>|. <div align="center"><img src="/storage/problem-media/116734/problem_116734_img_2.gif"></div>
Шахматист сыграл в турнире 20 партий и набрал 12,5 очков. На сколько партий больше он выиграл, чем проиграл?
У двух равнобедренных треугольников равны основания и радиусы описанных окружностей. Обязательно ли эти треугольники равны?
Существуют ли два одночлена, произведение которых равно –12<i>а</i><sup>4</sup><i>b</i>², а сумма является одночленом с коэффициентом 1?
Есть тысяча билетов с номерами 000, 001, ..., 999 и сто ящиков с номерами 00, 01, ..., 99. Билет разрешается опустить в ящик, если номер ящика может быть получен из номера билета вычеркиванием одной из цифр. Можно ли разложить все билеты в 50 ящиков?
Рассматриваются все треугольники <i>АВС</i>, у которых положение вершин <i>В</i> и <i>С</i> зафиксировано, а вершина <i>А</i> перемещается в плоскости треугольника так, что медиана <i>СМ</i> имеет одну и ту же длину. По какой траектории движется точка <i>А</i>?
Сколько существует таких натуральных <i>n</i>, не превосходящих 2012, что сумма 1<sup><i>n</i></sup> + 2<sup><i>n</i></sup> + 3<sup><i>n</i></sup> + 4<sup><i>n</i></sup> оканчивается на 0?
В прямоугольном треугольнике <i>АВС</i> угол <i>А</i> равен 60°, <i>М</i> – середина гипотенузы <i>АВ</i>.
Найдите угол <i>IMA</i>, где <i>I</i> – центр окружности, вписанной в данный треугольник.
Известно, что <i>x, y</i> и <i>z</i> – целые числа и <i>xy + yz + zx</i> = 1. Докажите, что число (1 + <i>x</i>²)(1 + <i>y</i>²)(1 + <i>z</i>²) является квадратом натурального числа.
Найдите наименьшее натуральное значение <i>n</i>, при котором число <i>n</i>! делится на 990.
Найдите среднюю линию равнобокой трапеции, если ее диагональ равна 25, а высота равна 15.
Для некоторых чисел <i>а, b, c</i> и <i>d</i>, отличных от нуля, выполняется равенство: <img align="absmiddle" src="/storage/problem-media/116531/problem_116531_img_2.gif"> . Найдите знак числа <i>ас</i>.
Можно ли начертить два треугольника так, чтобы образовался девятиугольник?
В треугольнике <i>АВС</i> проведена биссектриса <i>BD</i>. Докажите, что <i>АВ</i> > <i>AD</i>.
Решите уравнение: (<i>x</i> + 2010)(<i>x</i> + 2011)(<i>x</i> + 2012) = (<i>x</i> + 2011)(<i>x</i> + 2012)(<i>x</i> + 2013).
На плоскости дан квадрат и точка <i>Р</i>. Могут ли расстояния от точки <i>Р</i> до вершин квадрата оказаться равными 1, 1, 2 и 3?
Известно, что <img align="absmiddle" src="/storage/problem-media/116457/problem_116457_img_2.gif"> . Найдите значение выражения <img align="absmiddle" src="/storage/problem-media/116457/problem_116457_img_3.gif">.