Олимпиадные задачи из источника «2006 год» - сложность 1 с решениями

Найдите все такие функции  <i>f</i>(<i>x</i>), что  <i>f</i>(2<i>x</i> + 1) = 4<i>x</i>² + 14<i>x</i> + 7.

Остап Бендер и Киса Воробьянинов разделили между собой выручку от продажи слонов населению. Остап подумал: если бы я взял денег на 40% больше, то доля Кисы уменьшилась бы на 60%. А как изменилась бы доля Воробьянинова, если бы Остап взял себе денег на 50% больше?

Один градус шкалы Цельсия равен 1,8 градусов шкалы Фаренгейта, при этом 0° по Цельсию соответствует 32° по шкале Фаренгейта.

Может ли температура выражаться одинаковым числом градусов как по Цельсию, так и по Фаренгейту?

Решите уравнение:<div align="center"><img src="/storage/problem-media/104090/problem_104090_img_2.jpg"></div>

На вопрос о возрасте его детей математик ответил:

– У нас с женой трое детей. Когда родился наш первенец, суммарный возраст членов семьи был равен 45 годам, год назад, когда родился третий ребёнок – 70 годам, а сейчас суммарный возраст детей – 14 лет.

Сколько лет каждому ребенку, если известно, что у всех членов семьи дни рождения в один и тот же день?

Решите уравнение: |<i>x</i>- 2005| + |2005 -<i>x</i>| = 2006.

На физическом кружке учитель поставил следующий эксперимент. Он разложил на чашечные весы 16 гирек массами 1, 2, 3, ..., 16 грамм так, что одна из чаш перевесила. Пятнадцать учеников по очереди выходили из класса и забирали с собой по одной гирьке, причем после выхода каждого ученика весы меняли свое положение и перевешивала противоположная чаша весов. Какая гирька могла остаться на весах?

Петя тратит &frac13; своего времени на игру в футбол, &frac15; – на учебу в школе, &frac16; – на просмотр кинофильмов, <sup>1</sup>/<sub>70</sub> – на решение олимпиадных задач и &frac13; – на сон. Можно ли так жить?

У двузначного числа первая цифра вдвое больше второй. Если к этому числу прибавить квадрат его первой цифры, то получится квадрат некоторого целого числа. Найдите исходное двузначное число.

Цифры трёхзначного числа A записали в обратном порядке и получили число B. Может ли число, равное сумме A и B, записываться только нечётными цифрами?

В саду у Ани и Вити росло 2006 розовых кустов. Витя полил половину всех кустов, и Аня полила половину всех кустов. При этом оказалось, что ровно три куста, самые красивые, были политы и Аней, и Витей. Сколько розовых кустов остались не политыми?

В забеге от Воробьёвых гор до Красной площади приняли участие три спортсмена. Сначала стартовал Гриша, затем – Саша, и последней – Лена. После финиша выяснилось, что во время забега Гриша обгонял других 10 раз, Лена – 6 раз, Саша – 4 раза, причём все трое ни разу не оказывались в одной точке одновременно. В каком порядке финишировали спортсмены, если известно, что они пришли к финишу в разное время?

В день рождения дяди Федора почтальон Печкин хочет выяснить, сколько тому лет. Шарик говорит, что дяде Федору больше 11 лет, а кот Матроскин утверждает, что больше 10 лет. Сколько лет дяде Федору, если известно, что ровно один из них ошибся? Ответ обоснуйте.

Без ореха (от дупла до орешника) белка бежит со скоростью 4 м/с, а с орехом (от орешника до дупла) – со скоростью 2 м/с. На путь от дупла до орешника и обратно она тратит 54 секунды. Найдите расстояние от дупла до орешника.

Составьте квадрат, используя ровно четыре из пяти изображенных ниже фигур. Каждую из четырех выбранных Вами фигур можно использовать только один раз.<div align="center"><img src="/storage/problem-media/104070/problem_104070_img_2.jpg"></div>

В примере на сложение двух чисел первое слагаемое меньше суммы на 2000, а сумма больше второго слагаемого на 6.

Восстановите пример.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка