Олимпиадные задачи из источника «10 турнир (1988/1989 год)» для 10 класса - сложность 3-5 с решениями

Дан 101 прямоугольник с целыми сторонами, не превышающими 100.

Докажите, что среди них найдутся три прямоугольника <i>A, B, C</i>, которые можно поместить друг в друга (так что  <i>A</i> ⊂ <i>B</i> ⊂ <i>C</i>).

На плоскости дано <i>N</i> прямых  (<i>N</i> > 1),  никакие три из которых не пересекаются в одной точке и никакие две не параллельны. Докажите, что в частях, на которые эти прямые разбивают плоскость, можно расставить ненулевые целые числа, по модулю не превосходящие <i>N</i>, так, что суммы чисел по любую сторону от любой из данных прямых равны нулю.

В кооперативе из 11 человек имеется партячейка. На каждом собрании ячейки происходит либо приём одного члена в партию, либо исключение из партии одного человека. В партячейке не может быть меньше трёх человек. Возвращаться к какому-либо из прежних составов партячейки запрещено уставом. Может ли к какому-то моменту оказаться, что все варианты состава ячейки реализованы?  

Из центра окружности выходят <i>N</i> векторов, концы которых делят её на <i>N</i> равных дуг. Некоторые векторы синие, остальные – красные. Подсчитаем сумму углов "красный вектор – синий вектор" (каждый угол вычисляется от красного вектора к синему против часовой стрелки) и разделим её на общее число всех таких углов. Докажите, что полученная величина "среднего угла" равна 180°.

Докажите, что если <i>K</i> чётно, то числа от 1 до  <i>K</i> – 1  можно выписать в таком порядке, что сумма никаких нескольких подряд стоящих чисел не будет делиться на <i>K</i>.

На некотором поле шахматной доски стоит фишка. Двое по очереди переставляют фишку, при этом на каждом ходу, начиная со второго, расстояние, на которое она перемещается, должно быть строго больше, чем на предыдущем ходу. Проигравшим считается тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре? (Фишка ставится всегда точно в центр каждого поля.)

В стране 1988 городов и 4000 дорог.

Докажите, что можно указать кольцевой маршрут, проходящий не более, чем через 20 городов (каждая дорога соединяет два города).

Числа 1, 2, 3, ..., <i>N</i> записываются в строчку в таком порядке, что если где-то (не на первом месте) записано число <i>i</i>, то где-то слева от него встретится хотя бы одно из чисел  <i>i</i> + 1  и  <i>i</i> – 1.  Сколькими способами это можно сделать?

Существует ли такое натуральное число <i>M</i>, что никакое натуральное число, десятичная запись которого состоит лишь из нулей и не более чем 1988 единиц, не делится на <i>M</i>?

Выпуклый <i>n</i>-угольник разрезан непересекающимися диагоналями на треугольники. Разрешается проделывать следующее преобразование (<i>перестройку</i>): взяв пару треугольников <i>ABD</i> и <i>BCD</i> с общей стороной, заменить их на треугольники <i>ABC</i> и <i>ACD</i>. Пусть <i>P</i>(<i>n</i>) – наименьшее число перестроек, за которое можно перевести каждое разбиение в любое. Докажите, что

  а)  <i>P</i>(<i>n</i>) ≥ <i>n</i> – 3;

  б)  <i>P</i>(<i>n</i>) ≤ 2<i>n</i> – 7;

  в)  <i>P</i>(<i>n</i>) ≤ 2<i>n</i> – 10  при  <i>n</i> ≥ 13.

а) Даны две одинаковые шестерёнки с 14 зубьями каждая. Их наложили друг на друга так, что зубья совпали (так что проекция на плоскость выглядит как одна шестерёнка). После этого четыре пары совпадающих зубьев выпилили. Всегда ли можно повернуть эти шестерёнки друг относительно друга так, чтобы проекция на плоскость выглядела как одна целая шестерёнка? (Шестерёнки можно поворачивать, но нельзя переворачивать.) б) Тот же вопрос про две шестерёнки с 13 зубьями, из которых выпилили по 4 зуба.

Числа  1, 2, 3, ..., <i>n</i>  записываются в некотором порядке:  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., <i>a<sub>n</sub></i>.  Берётся сумма  <i>S</i> = <sup><i>a</i><sub>1</sub></sup>/<sub>1</sub> + <sup><i>a</i><sub>2</sub></sup>/<sub>2</sub> + ... + <sup><i>a<sub>n</sub></i></sup>/<sub><i>n</i></sub>.  Найдите такое <i>n</i>, чтобы среди таких сумм (при всевозможных перестановках  <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>,...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка