Олимпиадные задачи из источника «13 турнир (1991/1992 год)» для 9 класса - сложность 2-4 с решениями
13 турнир (1991/1992 год)
НазадИз центра <i>O</i> правильного <i>n</i>-угольника <i>A</i><sub>1</sub><i>A</i><sub>2</sub>...<i>A<sub>n</sub></i> проведены <i>n</i> векторов в его вершины. Даны такие числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>, что
<i>a</i><sub>1</sub> > <i>a</i><sub>2</sub> > ... > <i>a<sub>n</sub></i> > 0. Докажите, что линейная комбинация векторов <img align="absmiddle" src="/storage/problem-media/108112/problem_108112_img_2.gif"> отлична от нулевого вектора.
Стороны треугольника равны 3, 4 и 5. Биссектрисы внешних углов треугольника продолжены до пересечения с продолжениями сторон.
Докажите, что одна из трёх полученных точек есть середина отрезка, соединяющего две другие.
В трапеции <i>ABCD</i> (<i>AD</i> – основание) диагональ <i>AC</i> равна сумме оснований, а угол между диагоналями равен 60°.
Докажите, что трапеция равнобедренная.
Во вписанном четырёхугольнике <i>ABCD</i> длины сторон <i>BC</i> и <i>CD</i> равны. Докажите, что площадь этого четырёхугольника равна ½ <i>AC</i>² sin∠<i>A</i>.
Угол при вершине <i>A</i> равнобедренного треугольника <i>ABC</i> (<i>AB = AC</i>) равен 20°. На стороне <i>AB</i> отложим отрезок <i>AD</i>, равный <i>BC</i>. Найдите угол <i>BCD</i>.
В треугольнике <i>ABC</i> на стороне <i>AB</i> выбрана точка <i>D</i>, отличная от <i>B</i>, причём <i>AD</i> : <i>DC = AB</i> : <i>BC</i>. Докажите, что угол <i>C</i> тупой.
Внутри угла расположены две окружности с центрами <i>A</i> и <i>B</i>. Они касаются друг друга и двух сторон угла.
Докажите, что окружность с диаметром <i>AB</i> касается сторон угла.
Пусть <i>n</i> и <i>b</i> – натуральные числа. Через <i>V</i>(<i>n, b</i>) обозначим число разложений <i>n</i> на сомножители, каждый из которых больше <i>b</i> (например:
36 = 6·6 = 4·9 = 3·3·4 = 3·12, так что <i>V</i>(36, 2) = 5). Докажите, что <i>V</i>(<i>n, b</i>) < <sup><i>n</i></sup>/<sub><i>b</i></sub>.
Имеется 100 серебряных монет, упорядоченных по весу, и 101 золотая монета, они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за наименьшее число взвешиваний найти монету, занимающую среди всех монет 101-е место?
Дана таблица <i>n</i>×<i>n</i>, заполненная числами по следующему правилу: в клетке, стоящей в <i>i</i>-й строке и <i>j</i>-м столбце таблицы записано число <img align="absmiddle" src="/storage/problem-media/98139/problem_98139_img_2.gif"> В таблице зачеркнули <i>n</i> чисел таким образом, что никакие два зачёркнутых числа не находятся в одном столбце или в одной строке. Докажите, что сумма зачёркнутых чисел не меньше 1.
Докажите, что произведение всех целых чисел от 2<sup>1917</sup> + 1 до 2<sup>1991</sup> – 1 включительно не есть квадрат целого числа.
По окружности выписано 10 чисел, их сумма равна 100. Известно, что сумма каждой тройки чисел, стоящих подряд, не меньше 29.
Укажите такое наименьшее число <i>A</i>, что в любом таком наборе чисел каждое из чисел не превышает <i>A</i>.
Первого числа некоторого месяца в магазине было 10 видов товаров по одинаковой цене за штуку. После этого каждый день каждый товар дорожает либо в 2 раза, либо в 3 раза. Первого числа следующего месяца все цены оказались различными. Докажите, что отношение максимальной цены к минимальной больше 27.
Круг разбит на <i>n</i> секторов, в некоторых секторах стоят фишки – всего фишек <i>n</i> + 1. Затем позиция подвергается преобразованиям. Один шаг преобразования состоит в следующем: берутся какие-нибудь две фишки, стоящие в одном секторе, и переставляются в разные стороны в соседние секторы. Докажите, что через некоторое число шагов не менее половины секторов будет занято.
Имеется 50 серебряных монет, упорядоченных по весу, и 51 золотая монета, они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за семь взвешиваний найти монету, занимающую среди всех монет 51-е место?
Точка <i>P</i> лежит на описанной окружности треугольника <i>ABC</i>. Построим треугольник <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub>, стороны которого параллельны отрезкам <i>PA, PB, PC</i>
(<i>B</i><sub>1</sub><i>C</i><sub>1</sub> || <i>PA, C</i><sub>1</sub><i>A</i><sub>1</sub> || <i>PB, A</i><sub>1</sub><i>B</i><sub>1</sub> || <i>PC</i>). Через точки <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub>, <i>C</i><sub>1</sub> проведены прямые, пар...
Пусть <i>m, n</i> и <i>k</i> – натуральные числа, причём <i>m > n</i>. Какое из двух чисел больше: <img align="absmiddle" src="/storage/problem-media/98129/problem_98129_img_2.gif"> или <img align="absmiddle" src="/storage/problem-media/98129/problem_98129_img_3.gif"> (В каждом выражении <i>k</i> знаков квадратного корня, <i>m</i> и <i>n</i> чередуются.)
Пусть в прямоугольном треугольнике <i>AB</i> и <i>AC</i> – катеты, <i>AC > AB</i>. На <i>AC</i> выбрана точка <i>E</i>, а на <i>BC</i> – точка <i>D</i> так, что <i>AB = AE = BD</i>.
Докажите, что треугольник <i>ADE</i> прямоугольный тогда и только тогда, когда стороны треугольника <i>ABC</i> относятся как 3 : 4 : 5.
<i>n</i> чисел (<i>n</i> > 1) называются <i>близкими</i>, если каждое из них меньше чем сумма всех чисел, делённая на <i>n</i> – 1. Пусть <i>a, b, c, ... – n</i> близких чисел, <i>S</i> – их сумма. Докажите, что
а) все они положительны;
б) <i>a + b > c</i>;
в) <i>a + b > <sup>S</sup></i>/<sub><i>n</i>–1</sub>.
Окружность разбита на семь дуг так, что сумма каждых двух соседних дуг не превышает 103°.
Назовите такое наибольшее число <i>A</i>, что при любом таком разбиении каждая из семи дуг содержит не меньше <i>A</i>°.
Дана арифметическая прогрессия (с разностью, отличной от нуля), составленная из натуральных чисел, десятичная запись которых не содержит цифры 9.
а) Докажите, что число её членов меньше 100.
б) Приведите пример такой прогрессии с 72 членами.
в) Докажите, что число членов всякой такой прогрессии не больше 72.
Можно ли в таблицу 9×9 расставить такие натуральные числа, что одновременно выполняются следующие условия:
1) произведения чисел, стоящих в одной строке, одинаковы для всех строк;
2) произведения чисел, стоящих в одном столбце, одинаковы для всех столбцов;
3) среди чисел нет равных;
4) все числа не больше 1991?
По окружности записаны 30 чисел. Каждое из этих чисел равно модулю разности двух чисел, стоящих после него по часовой стрелке. Сумма всех чисел
равна 1. Найти эти числа.
В лес за грибами пошли 11 девочек и <i>n</i> мальчиков. Вместе они собрали <i>n</i>² + 9<i>n</i> – 2 гриба, причём все они собрали поровну грибов.
Кого было больше: мальчиков или девочек?
<i>n</i> школьников хотят разделить поровну <i>m</i> одинаковых шоколадок, при этом каждую шоколадку можно разломить не более одного раза.
а) При каких <i>n</i> это возможно, если <i>m</i> = 9?
б) При каких <i>n</i> и <i>m</i> это возможно?