Олимпиадные задачи из источника «29 турнир (2007/2008 год)» для 1-8 класса - сложность 3-4 с решениями
29 турнир (2007/2008 год)
НазадВ выпуклом четырёхугольнике <i>ABCD</i> нет параллельных сторон. Углы, образованные сторонами четырёхугольника с диагональю <i>AC</i>, равны (в каком-то порядке) 16°, 19°, 55° и 55°. Каким может быть острый угол между диагоналями <i>AC</i> и <i>BD</i>?
Существуют ли такие натуральные числа <i>a, b, c, d</i>, что <sup><i>a</i></sup>/<sub><i>b</i></sub> + <sup><i>c</i></sup>/<sub><i>d</i></sub> = 1, <sup><i>a</i></sup>/<sub><i>d</i></sub> + <sup><i>c</i></sup>/<sub><i>b</i></sub> = 2008?
По кругу стоят 99 детей, изначально у каждого есть мячик. Ежеминутно каждый ребёнок с мячиком кидает свой мячик одному из двух соседей; при этом, если два мячика попадают к одному ребёнку, то один из этих мячиков теряется безвозвратно. Через какое наименьшее время у детей может остаться только один мячик?
Несколько (конечное число) точек плоскости окрашены в четыре цвета, причём есть точки каждого цвета. Никакие три из этих точек не лежат на одной прямой. Докажите, что найдутся три разных (возможно, пересекающихся) треугольника, каждый из которых имеет вершины трёх разных цветов и не содержит внутри себя окрашенных точек.
Дана клетчатая полоска (шириной в одну клетку), бесконечная в обе стороны. Две клетки полоски являются <i>ловушками</i>, между ними – <i>N</i> клеток, на одной из которых сидит кузнечик. На каждом ходу мы называем натуральное число, после чего кузнечик прыгает на это число клеток влево или вправо (по своему выбору). При каких <i>N</i> можно называть числа так, чтобы гарантированно загнать кузнечика в одну из ловушек, где бы он ни был изначально между ловушками и как бы ни выбирал направления прыжков? (Мы всё время видим, где сидит кузнечик.)
Найдите все натуральные <i>n</i>, при которых (<i>n</i> + 1)! делится на сумму 1! + ... + <i>n</i>!.
Володя решил стать великим писателем. Для этого он каждой букве русского языка сопоставил слово, содержащее эту букву. Потом написал слово, сопоставленное букве "A". Дальше каждую букву в нем заменил на сопоставленное ей слово (разделяя слова пробелами), потом в получившемся тексте вновь заменил каждую букву на сопоставленное ей слово, и так всего 40 раз. Володин текст начинается так: "РЯД КОРАБЛЕЙ НА ДРЕМЛЮЩИХ МОРЯХ". Докажите, что этот оборот встречается в Володином тексте еще хотя бы раз.
Фокуснику завязывают глаза, а зритель выкладывает в ряд <i>N</i> одинаковых монет, сам выбирая, какие – орлом вверх, а какие – решкой. Ассистент фокусника просит зрителя написать на листе бумаги любое целое число от 1 до <i>N</i> и показать его всем присутствующим. Увидев число, ассистент указывает зрителю на одну из монет ряда и просит перевернуть её. Затем фокуснику развязывают глаза, он смотрит на ряд монет и безошибочно определяет написанное зрителем число.
a) Докажите, что если у фокусника с ассистентом есть способ, позволяющий фокуснику гарантированно отгадывать число для <i>N = k</i>, то есть способ и для <i>N</i> = 2<i>k</i>.
б) Найдите все значения <i>N</i>, для которых у фокусника с ассистентом е...
Дан набор из нескольких гирек, на каждой написана масса. Известно, что набор масс и набор надписей одинаковы, но возможно некоторые надписи перепутаны. Весы представляют из себя горизонтальный отрезок, закреплённый за середину. При взвешивании гирьки прикрепляются в произвольные точки отрезка, после чего весы остаются в равновесии либо отклоняются в ту или иную сторону. Всегда ли удастся за одно взвешивание проверить, все надписи верны или нет? (Весы будут в равновесии, если сумма моментов гирь справа от середины равна сумме моментов гирь слева; иначе отклонятся в сторону, где сумма больше. <i>Моментом</i> гири называется произведение <i>ms</i> массы гири <i>m</i> на расстояние <i>s</i> он нее до середины отрезка.)
Дана клетчатая полоса 1×<i>N</i>. Двое играют в следующую игру. На очередном ходу первый игрок ставит в одну из свободных клеток крестик, а второй – нолик. Не разрешается ставить в соседние клетки два крестика или два нолика. Проигрывает тот, кто не может сделать ход.
Кто из игроков может всегда выиграть (как бы ни играл его соперник)?
Миша стоит в центре круглой лужайке радиуса 100 метров. Каждую минуту он делает шаг длиной 1 метр. Перед каждым шагом он объявляет направление, в котором хочет шагнуть. Катя имеет право заставить его сменить направление на противоположное. Может ли Миша действовать так, чтобы в какой-то момент обязательно выйти с лужайки, или Катя всегда сможет ему помешать?
a) Петя и Вася задумали по три натуральных числа. Петя для каждых двух своих чисел написал на доске их наибольший общий делитель. Вася для каждых двух из своих чисел написал на доске их наименьшее общее кратное. Оказалось, что Петя написал на доске те же числа, что и Вася (возможно в другом порядке). Докажите, что все написанные на доске числа равны. б) Останется ли верным утверждение предыдущей задачи, если Петя и Вася изначально задумали по четыре натуральных числа?