Олимпиадные задачи из источника «7 турнир (1985/1986 год)» для 3-7 класса

Улицы города расположены в трёх направлениях, так что все кварталы – равные между собой равносторонние треугольники. Правила уличного движения таковы, что через перекресток можно проехать либо прямо, либо повернув влево или вправо на 120° в ближайшую улицу. Поворачивать разрешается только на перекрёстках. Две машины выехали друг за другом из одной точки в одном направлении и едут с одинаковой скоростью, придерживаясь этих правил. Может ли случиться, что через некоторое время они на какой-то улице (не на перекрёстке) встретятся?

Натуральное число <i>n</i> записано в десятичной системе счисления. Известно, что если какая-то цифра входит в эту запись, то <i>n</i> делится нацело на эту цифру (0 в записи не встречается). Какое максимальное число <i>различных</i> цифр может содержать эта запись?

Кошка ловит мышку в лабиринтах А, Б, В. Кошка ходит первой, начиная с узла, отмеченного буквой "К". Затем ходит мышка (из узла "М"), затем опять кошка и т. д. Из любого узла кошка и мышка ходят в любой соседний узел. Если в какой-то момент кошка и мышка оказываются в одном узле, кошка ест мышку. Сможет ли кошка поймать мышку в каждом из случаев А, Б, В? <div align="center"><img src="/storage/problem-media/97880/problem_97880_img_2.gif"></div>

Восемь волейбольных команд провели турнир в один круг (каждая команда сыграла с каждой один раз). Доказать, что можно выделить такие четыре команды <i>A, B, C</i> и <i>D</i>, что <i>A</i> выиграла у <i>B, C</i> и <i>D</i>; <i>B</i> выиграла у <i>C</i> и <i>D, C</i> выиграла у <i>D</i>.

Двое бросают монету: один бросил ее 10 раз, другой – 11 раз.

Чему равна вероятность того, что у второго монета упала орлом большее число раз, чем у первого?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка