Олимпиадные задачи из источника «9 турнир (1987/1988 год)» для 10 класса - сложность 2-5 с решениями

Рассматривается последовательность слов, состоящих из букв "A" и "B". Первое слово в последовательности – "A", <i>k</i>-е слово получается из (<i>k</i>–1)-го с помощью следующей операции: каждое "A" заменяется на "AAB", каждое "B" – на "A". Легко видеть, что каждое слово является началом следующего, тем самым получается бесконечная последовательность букв: AABAABAAABAABAAAB...

  а) На каком месте в этой последовательности встретится 1000-я буква "A"?

  б) Докажите, что эта последовательность – непериодическая.

Куб 20×20×20 составлен из 2000 кирпичей размером 2×2×1.

Докажите, что его можно проткнуть иглой так, чтобы игла прошла через две противоположные грани и не уткнулась в кирпич.

Имеется множество билетов с номерами от 1 до 30 (номера могут повторяться). Каждый из учеников вытянул один билет. Учитель может произвести следующую операцию: прочитать список из нескольких (возможно – одного) номеров и попросить их владельцев поднять руки. Сколько раз он должен проделать такую операцию, чтобы узнать номер каждого ученика? (Учеников не обязательно 30.)

<i>P</i>(<i>х</i>) – многочлен с целыми коэффициентами. Известно, что числа 1 и 2 являются его корнями. Докажите, что найдётся коэффициент, который меньше –1.

Прямой угол разбит на бесконечное число квадратных клеток со стороной единица. Будем рассматривать ряды клеток, параллельные сторонам угла (<i>вертикальные</i> и <i>горизонтальные</i> ряды). Можно ли в каждую клетку записать натуральное число так, чтобы каждый вертикальный и каждый горизонтальный ряд клеток содержал все натуральные числа по одному разу?

Можно ли покрыть плоскость окружностями так, чтобы через каждую точку проходило ровно 1988 окружностей?

Решите систему уравнений:

   (<i>x</i><sub>3</sub> + <i>x</i><sub>4</sub> + <i>x</i><sub>5</sub>)<sup>5</sup> = 3<i>x</i><sub>1</sub>,

   (<i>x</i><sub>4</sub> + <i>x</i><sub>5</sub> + <i>x</i><sub>1</sub>)<sup>5</sup> = 3<i>x</i><sub>2</sub>,

   (<i>x</i><sub>5</sub> + <i>x</i><sub>1</sub> + <i>x</i><sub>2</sub>)<sup>5</sup> = 3<i>x</i><sub>3</sub>,

   (<i>x</i><sub>1</sub> + <i>x</i><sub>2</sub> + <i>x</i&g...

В окружность вписаны две равнобочные трапеции так, что каждая сторона одной трапеции параллельна некоторой стороне другой.

Докажите, что диагонали одной трапеции равны диагоналям другой.

Можно ли подобрать четыре непрозрачных попарно непересекающихся шара так, чтобы ими можно было загородить точечный источник света?

В центре квадратного бассейна находится мальчик, а в вершине на берегу стоит учительница. Максимальная скорость мальчика в воде в три раза меньше максимальной скорости учительницы на суше. Учительница плавать не умеет, а на берегу мальчик бегает быстрее учительницы. Сможет ли мальчик убежать?

Двое играющих по очереди увеличивают натуральное число так, чтобы при каждом увеличении разность между новым и старым значениями числа была бы больше нуля, но меньше старого значения. Начальное значение числа равно 2. Выигравшим считается тот, в результате хода которого получится 1987. Кто выигрывает при правильной игре: начинающий или его партнёр?

Внутри квадрата со стороной 1 расположено несколько окружностей, сумма длин которых равна 10.

Докажите, что найдётся прямая, пересекающая по крайней мере четыре из этих окружностей.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка