Олимпиадные задачи из источника «Заключительный этап» для 2-11 класса - сложность 3-5 с решениями
Плоскость разбита двумя семействами параллельных прямых на единичные квадратики. Назовем каемкой квадрата<i>n</i>×<i>n</i>, состоящего из квадратиков разбиения, объединение тех квадратиков, которые хотя бы одной из своих сторон примыкают изнутри к его границе. Докажите, что существует ровно один способ покрытия квадрата100<i>×</i>100, состоящего из квадратиков разбиения, неперекрывающимися каемками пятидесяти квадратов. (Каемки могут и не содержаться в квадрате100<i>× </i>100.)
Натуральные числа от 1 до 1000 по одному выписали на карточки, а затем накрыли этими карточками какие-то 1000 клеток прямоугольника1<i>x </i>1994. Если соседняя справа от карточки с числом<i> n </i>клетка свободна, то за один ход ее разрешается накрыть карточкой с числом<i> n+</i>1. Докажите, что нельзя сделать более полумиллиона таких ходов.
На прямой отмечены<i> n </i>различных синих точек и<i> n </i>различных красных точек. Докажите, что сумма попарных расстояний между точками одного цвета не превосходит суммы попарных расстояний между точками разного цвета.
На столе лежат три кучки спичек. В первой кучке находится 100 спичек, во второй – 200, а в третьей – 300. Двое играют в такую игру. Ходят по очереди, за один ход игрок должен убрать одну из кучек, а любую из оставшихся разделить на две непустые части. Проигравшим считается тот, кто не может сделать ход. Кто выиграет при правильной игре: начинающий или его партнер?
Окружности<i> S<sub>1</sub> </i>и<i> S<sub>2</sub> </i>касаются внешним образом в точке<i> F </i>. Прямая<i> l </i>касается<i> S<sub>1</sub> </i>и<i> S<sub>2</sub> </i>в точках<i> A </i>и<i> B </i>соответственно. Прямая, параллельная прямой<i> l </i>, касается<i> S<sub>2</sub> </i>в точке<i> C </i>и пересекает<i> S<sub>1</sub> </i>в двух точках. Докажите, что точки<i> A </i>,<i> F </i>и<i> C </i>лежат на одной прямой.
Докажите, что если(<i>x+<img src="/storage/problem-media/109565/problem_109565_img_2.gif"></i>)(<i>y+<img src="/storage/problem-media/109565/problem_109565_img_3.gif"></i>)<i>=</i>1, то<i> x+y=</i>0.
В классе 30 учеников, и у каждого из них одинаковое число друзей среди одноклассников. Каково наибольшее возможное число учеников, которые учатся лучше большинства своих друзей? (Про любых двух учеников в классе можно сказать, кто из них учится лучше; если <i>A</i> учится лучше <i>B</i>, а тот – лучше <i>C</i>, то <i>A</i> учится лучше <i>C</i>.)
Функции <i>f</i>(<i>x</i>) и <i>g</i>(<i>x</i>) определены на множестве целых чисел, не превосходящих по модулю 1000. Обозначим через <i>m</i> число пар (<i>x, y</i>), для которых
<i>f</i>(<i>x</i>) = <i>g</i>(<i>y</i>), через <i>n</i> – число пар, для которых <i>f</i>(<i>x</i>) = <i>f</i>(<i>y</i>), а через <i>k</i> – число пар, для которых <i>g</i>(<i>x</i>) = <i>g</i>(<i>y</i>). Докажите, что 2<i>m ≤ n + k</i>.
В правильном (6<i>n</i>+1)-угольнике <i>K</i> вершин покрашено в красный цвет, а остальные – в синий.
Докажите, что количество равнобедренных треугольников с одноцветными вершинами не зависит от способа раскраски.
Даны три приведённых квадратных трехчлена: <i>P</i><sub>1</sub>(<i>x</i>), <i>P</i><sub>2</sub>(<i>x</i>) и <i>P</i><sub>3</sub>(<i>x</i>). Докажите, что уравнение |<i>P</i><sub>1</sub>(<i>x</i>)| + |<i>P</i><sub>2</sub>(<i>x</i>)| = |<i>P</i><sub>3</sub>(<i>x</i>)| имеет не более восьми корней.
Игроки <i>A</i> и <i>B</i> по очереди ходят конем на шахматной доске 1994×1994. Игрок <i>A</i> может делать только горизонтальные ходы, то есть такие, при которых конь перемещается на соседнюю горизонталь. Игроку <i>B</i> разрешены только вертикальные ходы, при которых конь перемещается на соседнюю вертикаль. Игрок <i>A</i> ставит коня на поле, с которого начинается игра, и делает первый ход. При этом каждому игроку запрещено ставить коня на то поле, на котором он уже побывал в данной игре. Проигравшим считается игрок, которому некуда ходить. Докажите, что для игрока <i>A</i> существует выигрышная стратегия.
Высоты <i>AA</i><sub>1</sub>, <i>BB</i><sub>1</sub>, <i>CC</i><sub>1</sub> и <i>DD</i><sub>1</sub> тетраэдра <i>ABCD</i> пересекаются в центре <i>H</i> сферы, вписанной в тетраэдр <i>A</i><sub>1</sub><i>B</i><sub>1</sub><i>C</i><sub>1</sub><i>D</i><sub>1</sub>.
Докажите, что тетраэдр <i>ABCD</i> – правильный.
Дана последовательность натуральных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>, в которой <i>a</i><sub>1</sub> не делится на 5 и для всякого <i>n</i> <i>a</i><sub><i>n</i>+1</sub> = <i>a<sub>n</sub> + b<sub>n</sub></i>, где <i>b<sub>n</sub></i> – последняя цифра числа <i>a<sub>n</sub></i>. Докажите, что последовательность содержит бесконечно много степеней двойки.
В клетках бесконечного листа клетчатой бумаги записаны действительные числа. Рассматриваются две фигуры, каждая из которых состоит из конечного числа клеток. Фигуры разрешается перемещать параллельно линиям сетки на целое число клеток. Известно, что для любого положения первой фигуры сумма чисел, записанных в накрываемых ею клетках, положительна. Докажите, что существует положение второй фигуры, при котором сумма чисел в накрываемых ею клетках положительна.
Две окружности<i>S</i><sub>1</sub>и<i>S</i><sub>2</sub>касаются внешним образом в точке<i>F</i>. Их общая касательная касается<i>S</i><sub>1</sub>и<i>S</i><sub>2</sub>в точках<i>A</i>и<i>B</i>соответственно. Прямая, параллельная<i>AB</i>, касается окружности<i>S</i><sub>2</sub>в точке<i>C</i>и пересекает окружность<i>S</i><sub>1</sub>в точках<i>D</i>и<i>E</i>. Докажите, что общая хорда описанных окружностей треугольников<i>ABC</i>и<i>BDE</i>, проходит через точку<i>F</i>.
Внутри выпуклого стоугольника выбрано<i> k </i>точек,2<i><img src="/storage/problem-media/109552/problem_109552_img_2.gif"> k<img src="/storage/problem-media/109552/problem_109552_img_2.gif"> </i>50. Докажите, что можно отметить2<i>k </i>вершин стоугольника так, чтобы все выбранные точки оказались внутри2<i>k </i>-угольника с отмеченными вершинами.
Каждая из окружностей<i> S</i>1,<i> S</i>2и<i> S</i>3касается внешним образом окружности<i> S </i>(в точках<i> A</i>1,<i> B</i>1и<i> C</i>1соответственно) и двух сторон треугольника<i> ABC </i>(см.рис.). Докажите, что прямые<i> AA</i>1,<i> BB</i>1и<i> CC</i>1пересекаются в одной точке.
Пусть<i> a </i>,<i> b </i>и<i> c </i>– стороны треугольника,<i> m<sub>a</sub> </i>,<i> m<sub>b</sub> </i>и<i> m<sub>c</sub> </i>– медианы, проведённые к этим сторонам,<i> D </i>– диаметр окружности, описанной около треугольника. Докажите, что <center><i>
<img src="/storage/problem-media/108204/problem_108204_img_2.gif"> + <img src="/storage/problem-media/108204/problem_108204_img_3.gif">+ <img src="/storage/problem-media/108204/problem_108204_img_4.gif"> <img src="/storage/problem-media/108204/problem_108204_img_5.gif"> </i>6<i>D.
</i></center>
Трапеция <i>ABCD</i> такова, что на её боковых сторонах <i>AD</i> и <i>BC</i> существуют такие точки <i>P</i> и <i>Q</i> соответственно, что ∠<i>APB</i> = ∠<i>CPD</i>, ∠<i>AQB</i> = ∠<i>CQD</i>.
Докажите, что точки <i>P</i> и <i>Q</i> равноудалены от точки пересечения диагоналей трапеции.