Олимпиадные задачи из источника «Региональный этап» для 11 класса - сложность 2-5 с решениями

Докажите, что если <center><i> <img src="/storage/problem-media/109920/problem_109920_img_2.gif">+<img src="/storage/problem-media/109920/problem_109920_img_3.gif">+<img src="/storage/problem-media/109920/problem_109920_img_4.gif">=<img src="/storage/problem-media/109920/problem_109920_img_5.gif">+<img src="/storage/problem-media/109920/problem_109920_img_6.gif">+<img src="/storage/problem-media/109920/problem_109920_img_7.gif">=

<img src="/storage/problem-media/109920/problem_109920_img_8.gif">+<img src="/storage/problem-media/109920/problem_109920_img_9.gif">+<img src="/storage/problem-media/109920/problem_109920_img_10.gif">

<...

Для каких<i> α </i>существует функция<i> f </i>:<i> <img src="/storage/problem-media/109912/problem_109912_img_2.gif"><img src="/storage/problem-media/109912/problem_109912_img_3.gif"><img src="/storage/problem-media/109912/problem_109912_img_2.gif"> </i>, отличная от константы, такая, что <center><i>

f</i>(<i>α</i>(<i>x+y</i>))<i>=f</i>(<i>x</i>)<i>+f</i>(<i>y</i>)<i>;? </i></center>

Существуют ли выпуклая<i> n </i>-угольная (<i> n<img src="/storage/problem-media/109911/problem_109911_img_2.gif"> </i>4) и треугольная пирамиды такие, что четыре трехгранных угла<i> n </i>-угольной пирамиды равны трехгранным углам треугольной пирамиды?

Докажите, что если1<i><a<b<c </i>, то <center><i>

log <sub>a</sub></i>(<i>log <sub>a</sub> b</i>)<i>+log <sub>b</sub> </i>(<i>log <sub>b</sub> c</i>)<i>+log <sub>c</sub></i>(<i>log <sub>c</sub>a</i>)<i>></i>0<i>. </i></center>

Члены Государственной Думы образовали фракции так, что для любых двух фракций<i> A </i>и<i> B </i>(не обязательно различных)<i> <img src="/storage/problem-media/109909/problem_109909_img_2.gif"> </i>– тоже фракция (через<i> <img src="/storage/problem-media/109909/problem_109909_img_3.gif"> </i>обозначается множество всех членов Думы, не входящих в<i> C </i>). Докажите, что для любых двух фракций<i> A </i>и<i> B </i><i> A<img src="/storage/problem-media/109909/problem_109909_img_4.gif"> B </i>– также фракция.

Обозначим через <i>S</i>(<i>m</i>) сумму цифр натурального числа <i>m</i>. Докажите, что существует бесконечно много таких натуральных <i>n</i>, что  <i>S</i>(3<i><sup>n</sup></i>) ≥ <i>S</i>(3<sup><i>n</i>+1</sup>).

Все вершины треугольника<i> ABC </i>лежат внутри квадрата<i> K </i>. Докажите, что если все их отразить симметрично относительно точки пересечения медиан треугольника<i> ABC </i>, то хотя бы одна из полученных трех точек окажется внутри<i> K </i>.

Дан треугольник <i>ABC</i>. Точка <i>B</i><sub>1</sub> делит пополам длину ломаной <i>ABC</i> (составленной из отрезков <i>AB</i> и <i>BC</i>), точка <i>C</i><sub>1</sub> делит пополам длину ломаной <i>ACB</i>, точка <i>A</i><sub>1</sub> делит пополам длину ломаной <i>CAB</i>. Через точки <i>A</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>C</i><sub>1</sub> проводятся прямые <i>l<sub>A</sub>, l<sub>B</sub></i> и <i>l<sub>C</sub></i>, параллельные биссектрисам углов <i>BAC, ABC</i> и <i>ACB</i> соотв...

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка