Олимпиадные задачи по математике для 10 класса - сложность 1-2 с решениями

В клетках таблицы <i>n×n</i> стоят плюсы и минусы. За один ход разрешается в произвольной строке или в произвольном столбце поменять все знаки на противоположные. Известно, что из начальной расстановки можно получить такую, при которой во всех ячейках стоят плюсы. Докажите, что этого можно добиться не более чем за <i>n</i> ходов.

Известно, что сумма любых двух из трёх квадратных трёхчленов  <i>x</i>² + <i>ax + b</i>,  <i>x</i>² + <i>cx + d</i>,  <i>x</i>² + <i>ex + f</i>  не имеет корней.

Может ли сумма всех этих трёхчленов иметь корни?

Известно, что<i>tg</i> $\alpha$+<i>tg</i> $\beta$=<i>p</i>,<i>ctg</i> $\alpha$+<i>ctg</i> $\beta$=<i>q</i>. Найти <i>tg</i> ($\alpha$+$\beta$).

Существуют ли такие три квадратных трёхчлена, что каждый из них имеет два различных действительных корня, а сумма любых двух из них действительных корней не имеет?

Существуют ли такие три квадратных трёхчлена, что каждый из них имеет корень, а сумма любых двух из них корней не имеет?

На квадратном торте расположены треугольные шоколадки, которые не соприкасаются между собой. Всегда ли можно разрезать торт на выпуклые многоугольники так, чтобы каждый многоугольник содержал ровно одну шоколадку? (Торт считайте плоским квадратом.)

Куб со стороной 20 разбит на 8000 единичных кубиков, и в каждом кубике записано число. Известно, что в каждом столбике из 20 кубиков, параллельном ребру куба, сумма чисел равна 1 (рассматриваются столбики всех трёх направлений). В некотором кубике записано число 10. Через этот кубик проходит три <i>слоя</i> 1×20×20, параллельных граням куба. Найдите сумму всех чисел вне этих слоёв.

Можно ли разбить все пространство на правильные тетраэдры и октаэдры?

В ряд выписаны действительные числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., <i>a</i><sub>1996</sub>. Докажите, что можно выделить одно или несколько стоящих рядом чисел так, что их сумма будет отличаться от целого числа меньше, чем на 0,001.

Существует ли кусочно-линейная функция <i>f</i>, определённая на отрезке  [–1, 1]  (включая концы), для которой  <i>f</i>(<i>f</i>(<i>x</i>))= – <i>x</i>  при всех <i>x</i>?

(Функция называется кусочно-линейной, если её график есть объединение конечного числа точек и интервалов прямой; она может быть разрывной.)

Дана последовательность  <i>a<sub>n</sub></i> = 1 + 2<sup><i>n</i></sup> + ... + 5<sup><i>n</i></sup>.  Существуют ли пять идущих подряд её членов, кратных 2005?

Существует ли число, в десятичной записи квадрата которого имеется последовательность цифр «2018»?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка