Олимпиадные задачи по математике для 3-8 класса - сложность 3 с решениями

Миша решил уравнение  <i>x</i>² + <i>ax + b</i> = 0  и сообщил Диме набор из четырёх чисел – два корня и два коэффициента этого уравнения (но не сказал, какие именно из них корни, а какие – коэффициенты). Сможет ли Дима узнать, какое уравнение решал Миша, если все числа набора оказались различными?

Рассматриваются всевозможные квадратные трёхчлены вида  <i>x</i>² + <i>px + q</i>,  где <i>p, q</i> – целые,  1 ≤ <i>p</i> ≤ 1997,  1 ≤ <i>q</i> ≤ 1997.

Каких трёхчленов среди них больше: имеющих целые корни или не имеющих действительных корней?

В треугольник <i>ABC</i> вписана окружность, касающаяся сторон <i>AB, AC</i> и <i>BC</i> в точках <i>C</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>A</i><sub>1</sub> соответственно. Пусть <i>K</i> – точка на окружности, диаметрально противоположная точке <i>C</i><sub>1</sub>, <i>D</i> – точка пересечения прямых <i>B</i><sub>1</sub><i>C</i><sub>1</sub> и <i>A</i><sub>1</sub><i>K</i>. Докажите, что  <i>CD = CB</i><sub>1</sub>.

Вписанная окружность треугольника <i>ABC</i>  (<i>AB > BC</i>)  касается сторон <i>AB</i> и <i>AC</i> в точках <i>P</i> и <i>Q</i> соответственно, <i>RS</i> – средняя линия, параллельная стороне <i>AB</i>, <i>T</i> – точка пересечения прямых <i>PQ</i> и <i>RS</i>. Докажите, что точка <i>T</i> лежит на биссектрисе угла <i>B</i> треугольника <i>ABC</i>.

Вписанная окружность треугольника <i>ABC</i> касается сторон <i>AB</i> и <i>AC</i> в точках <i>P</i> и <i>Q</i> соответственно. Пусть <i>RS</i> – средняя линия треугольника, параллельная <i>AB, T</i> – точка пересечения прямых <i>PQ</i> и <i>RS</i>. Докажите, что <i>T</i> лежит на биссектрисе угла <i>B</i> треугольника.

Из бумаги вырезан квадрат, сторона которого равна 1. Сделав не больше 20 сгибов, постройте отрезок длины 1/2024. Никаких инструментов нет, можно только сгибать бумагу по прямым и отмечать точки пересечения линий сгиба.

На плоскости начерчены треугольник $ABC$, описанная около него окружность и центр $I$ его вписанной окружности. Пользуясь только линейкой, постройте центр описанной окружности.

Вася выбрал $100$ различных натуральных чисел из множества ${1, 2, 3, \ldots, 120}$ и расставил их в некотором порядке вместо звёздочек в выражении (всего $100$ звёздочек и $50$ знаков корня) $$ \sqrt{(* + )\cdot \sqrt{( + ) \cdot \sqrt{ \ldots \sqrt{+*}}}} . $$ Могло ли значение полученного выражения оказаться целым числом?

Какой наибольший рациональный корень может иметь уравнение вида $ax$² + $bx + c$ = 0, где $a, b$ и $c$ – натуральные числа, не превосходящие 100?

Пятиугольник $ABCDE$ описан около окружности. Углы при его вершинах $A$, $C$ и $E$ равны $100^\circ$. Найдите угол $ACE$.

Коттеджный посёлок имеет размеры 𝑛 × 𝑚 одинаковых квадратных участков. Собственники по очереди начали огораживать свои участки забором. Стоимость части забора между любыми двумя соседними участками составила 10 тысяч рублей и её полностью нёс тот сосед, который огораживал свой участок первым (расходы не делились между соседями, то есть некоторые могли вообще ничего не потратить). В итоге все участки оказались огорожены забором с четырёх сторон. Могло ли оказаться, что в итоге поровну жителей потратило на забор по 0, 10, 30 и 40 тысяч рублей, а остальные — по 20 тысяч?

Может ли в сечении какого-то тетраэдра двумя разными плоскостями получиться два квадрата: один – со стороной, не большей 1, а другой – со стороной, не меньшей 100?

У Пети есть колода из 36 карт (4 масти по 9 карт в каждой). Он выбирает из неё половину карт (какие хочет) и отдаёт Васе, а вторую половину оставляет себе. Далее каждым ходом игроки по очереди выкладывают на стол по одной карте (по своему выбору, в открытом виде); начинает Петя. Если в ответ на ход Пети Вася смог выложить карту той же масти или того же достоинства, Вася зарабатывает

1 очко. Какое наибольшее количество очков он может гарантированно заработать?

Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1.

  а) Может ли ортогональной проекцией этого тетраэдра на плоскость другой его грани быть квадрат площади 1?

  б) А квадрат площади <sup>1</sup>/<sub>2019</sub>?

Назовём девятизначное число <i>красивым</i>, если все его цифры различны. Докажите, что существует по крайней мере  а) 1000;  б) 2018 красивых чисел, каждое из которых делится на 37.

В каждом из $16$ отделений коробки $4\times 4$ лежит по золотой монете. Коллекционер помнит, что какие-то две лежащие рядом монеты (соседние по стороне) весят по $9$ грамм, а остальные по $10$ грамм. За какое наименьшее число взвешиваний на весах, показывающих общий вес в граммах, можно определить эти две монеты?

На доску $2018\times 2018$ клеток положили без наложений некоторое количество доминошек, каждая из которых закрывает ровно две клетки. Оказалось, что ни у каких двух доминошек нет общей целой стороны, т. е. никакие две не образуют ни квадрат $2\times 2$, ни прямоугольник $4\times 1$. Может ли при этом быть покрыто более 99% всех клеток доски?

Имеются одна треугольная и одна четырёхугольная пирамиды, все рёбра которых равны 1. Покажите, как разрезать их на несколько частей и склеить из этих частей куб (без пустот и щелей, все части должны использоваться).

Вписанная окружность касается сторон $AB, BC$ и $AC$ треугольника $ABC$ в точках $N, K$ и $M$ соответственно. Прямые $MN$ и $MK$ пересекают биссектрису внешнего угла $B$ в точках $R$ и $S$ соответственно. Докажите, что прямые $RK$ и $SN$ пересекаются на вписанной окружности треугольника $ABC$.

а) Может ли шар некоторого радиуса высекать на гранях какого-нибудь правильного тетраэдра круги радиусов 1, 2, 3 и 4? б) Тот же вопрос для шара радиуса 5.

Окружность радиуса 1 нарисована на шахматной доске так, что целиком содержит внутри белую клетку (сторона клетки равна 1).

Докажите, что участки этой окружности, проходящие по белым клеткам, составляют суммарно не более трети её длины.

На одной из клеток поля 8×8 зарыт клад. Вы находитесь с металлоискателем в центре одной из угловых клеток этого поля и передвигаетесь, переходя в центры соседних по стороне клеток. Металлоискатель срабатывает, если вы оказались на той клетке, где зарыт клад, или в одной из соседних с ней по стороне клеток. Можно ли гарантированно указать клетку, где зарыт клад, пройдя расстояние не более 26?

Доминошки 1×2 кладут без наложений на шахматную доску 8×8. При этом доминошки могут вылезать за границу доски, но центр каждой доминошки должен лежать строго внутри доски (не на границе). Положите таким образом на доску   а) хотя бы 40 доминошек;   б) хотя бы 41 доминошку;   в) более 41 доминошки.

В каждой клетке доски размером 5×5 стоит крестик или нолик, причём никакие три крестика не стоят подряд ни по горизонтали, ни по вертикали, ни по диагонали. Какое наибольшее количество крестиков может быть на доске?

Художник-абстракционист взял деревянный куб 5×5×5, разбил каждую грань на единичные квадраты и окрасил каждый из них в один из трёх цветов – чёрный, белый или красный – так, что нет соседних по стороне квадратов одного цвета. Какое наименьшее число чёрных квадратов могло при этом получиться? (Квадраты, имеющие общую сторону, считаются соседними и в случае, когда они лежат на разных гранях куба.)

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка