Олимпиадные задачи по математике для 8 класса - сложность 3-5 с решениями

Миша решил уравнение  <i>x</i>² + <i>ax + b</i> = 0  и сообщил Диме набор из четырёх чисел – два корня и два коэффициента этого уравнения (но не сказал, какие именно из них корни, а какие – коэффициенты). Сможет ли Дима узнать, какое уравнение решал Миша, если все числа набора оказались различными?

Рассматриваются всевозможные квадратные трёхчлены вида  <i>x</i>² + <i>px + q</i>,  где <i>p, q</i> – целые,  1 ≤ <i>p</i> ≤ 1997,  1 ≤ <i>q</i> ≤ 1997.

Каких трёхчленов среди них больше: имеющих целые корни или не имеющих действительных корней?

Можно ли прямоугольник $5 \times 7$ покрыть уголками из трёх клеток (т.е. фигурками, которые получаются из квадрата $2 \times 2$ удалением одной клетки), не выходящими за его пределы, в несколько слоёв так, чтобы каждая клетка прямоугольника была покрыта одинаковым числом клеток, принадлежащих уголкам?

В треугольник <i>ABC</i> вписана окружность, касающаяся сторон <i>AB, AC</i> и <i>BC</i> в точках <i>C</i><sub>1</sub>, <i>B</i><sub>1</sub> и <i>A</i><sub>1</sub> соответственно. Пусть <i>K</i> – точка на окружности, диаметрально противоположная точке <i>C</i><sub>1</sub>, <i>D</i> – точка пересечения прямых <i>B</i><sub>1</sub><i>C</i><sub>1</sub> и <i>A</i><sub>1</sub><i>K</i>. Докажите, что  <i>CD = CB</i><sub>1</sub>.

а) Каждую сторону четырёхугольника в процессе обхода по часовой стрелке продолжили на её длину. Оказалось, что новые концы построенных отрезков служат вершинами квадрата. Докажите, что исходный четырёхугольник – квадрат. б) Докажите, что если в результате такой же процедуры из некоторого <i>n</i>-угольника получается правильный <i>n</i>-угольник, то исходный многоугольник – правильный.

Вписанная окружность треугольника <i>ABC</i>  (<i>AB > BC</i>)  касается сторон <i>AB</i> и <i>AC</i> в точках <i>P</i> и <i>Q</i> соответственно, <i>RS</i> – средняя линия, параллельная стороне <i>AB</i>, <i>T</i> – точка пересечения прямых <i>PQ</i> и <i>RS</i>. Докажите, что точка <i>T</i> лежит на биссектрисе угла <i>B</i> треугольника <i>ABC</i>.

Вписанная окружность треугольника <i>ABC</i> касается сторон <i>AB</i> и <i>AC</i> в точках <i>P</i> и <i>Q</i> соответственно. Пусть <i>RS</i> – средняя линия треугольника, параллельная <i>AB, T</i> – точка пересечения прямых <i>PQ</i> и <i>RS</i>. Докажите, что <i>T</i> лежит на биссектрисе угла <i>B</i> треугольника.

Из бумаги вырезан квадрат, сторона которого равна 1. Сделав не больше 20 сгибов, постройте отрезок длины 1/2024. Никаких инструментов нет, можно только сгибать бумагу по прямым и отмечать точки пересечения линий сгиба.

На плоскости начерчены треугольник $ABC$, описанная около него окружность и центр $I$ его вписанной окружности. Пользуясь только линейкой, постройте центр описанной окружности.

Вася выбрал $100$ различных натуральных чисел из множества ${1, 2, 3, \ldots, 120}$ и расставил их в некотором порядке вместо звёздочек в выражении (всего $100$ звёздочек и $50$ знаков корня) $$ \sqrt{(* + )\cdot \sqrt{( + ) \cdot \sqrt{ \ldots \sqrt{+*}}}} . $$ Могло ли значение полученного выражения оказаться целым числом?

Существует ли описанный 2021-угольник, все вершины и центр вписанной окружности которого имеют целочисленные координаты?

Какой наибольший рациональный корень может иметь уравнение вида $ax$² + $bx + c$ = 0, где $a, b$ и $c$ – натуральные числа, не превосходящие 100?

Пятиугольник $ABCDE$ описан около окружности. Углы при его вершинах $A$, $C$ и $E$ равны $100^\circ$. Найдите угол $ACE$.

Коттеджный посёлок имеет размеры 𝑛 × 𝑚 одинаковых квадратных участков. Собственники по очереди начали огораживать свои участки забором. Стоимость части забора между любыми двумя соседними участками составила 10 тысяч рублей и её полностью нёс тот сосед, который огораживал свой участок первым (расходы не делились между соседями, то есть некоторые могли вообще ничего не потратить). В итоге все участки оказались огорожены забором с четырёх сторон. Могло ли оказаться, что в итоге поровну жителей потратило на забор по 0, 10, 30 и 40 тысяч рублей, а остальные — по 20 тысяч?

Существуют ли 100 таких натуральных чисел, среди которых нет одинаковых, что куб одного из них равен сумме кубов остальных?

Может ли в сечении какого-то тетраэдра двумя разными плоскостями получиться два квадрата: один – со стороной, не большей 1, а другой – со стороной, не меньшей 100?

У Пети есть колода из 36 карт (4 масти по 9 карт в каждой). Он выбирает из неё половину карт (какие хочет) и отдаёт Васе, а вторую половину оставляет себе. Далее каждым ходом игроки по очереди выкладывают на стол по одной карте (по своему выбору, в открытом виде); начинает Петя. Если в ответ на ход Пети Вася смог выложить карту той же масти или того же достоинства, Вася зарабатывает

1 очко. Какое наибольшее количество очков он может гарантированно заработать?

Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1.

  а) Может ли ортогональной проекцией этого тетраэдра на плоскость другой его грани быть квадрат площади 1?

  б) А квадрат площади <sup>1</sup>/<sub>2019</sub>?

Назовём девятизначное число <i>красивым</i>, если все его цифры различны. Докажите, что существует по крайней мере  а) 1000;  б) 2018 красивых чисел, каждое из которых делится на 37.

В каждом из $16$ отделений коробки $4\times 4$ лежит по золотой монете. Коллекционер помнит, что какие-то две лежащие рядом монеты (соседние по стороне) весят по $9$ грамм, а остальные по $10$ грамм. За какое наименьшее число взвешиваний на весах, показывающих общий вес в граммах, можно определить эти две монеты?

У Полины есть колода из 36 карт (4 масти по 9 карт в каждой). Она выбирает из неё половину карт, какие хочет, и отдает Василисе, а вторую половину оставляет себе. Далее каждым ходом игроки по очереди открывают по одной карте по своему выбору (соперник видит масть и достоинство открытой карты), начиная с Полины. Если в ответ на ход Полины Василиса смогла положить карту той же масти или того же достоинства, то Василиса зарабатывает одно очко. Какое наибольшее количество очков Василиса может гарантированно заработать?

В остроугольном треугольнике $ABC$ проведены высоты $AA_1$ и $CC_1$. Окружность, описанная вокруг треугольника $A_1BC_1$, проходит через точку $M$ пересечения медиан. Найдите все возможные значения величины угла $B$.

На доску $2018\times 2018$ клеток положили без наложений некоторое количество доминошек, каждая из которых закрывает ровно две клетки. Оказалось, что ни у каких двух доминошек нет общей целой стороны, т. е. никакие две не образуют ни квадрат $2\times 2$, ни прямоугольник $4\times 1$. Может ли при этом быть покрыто более 99% всех клеток доски?

Имеются одна треугольная и одна четырёхугольная пирамиды, все рёбра которых равны 1. Покажите, как разрезать их на несколько частей и склеить из этих частей куб (без пустот и щелей, все части должны использоваться).

Вписанная окружность касается сторон $AB, BC$ и $AC$ треугольника $ABC$ в точках $N, K$ и $M$ соответственно. Прямые $MN$ и $MK$ пересекают биссектрису внешнего угла $B$ в точках $R$ и $S$ соответственно. Докажите, что прямые $RK$ и $SN$ пересекаются на вписанной окружности треугольника $ABC$.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка