Олимпиадные задачи по математике для 10 класса - сложность 3-5 с решениями
Можно ли, применяя к числу 1 функции sin, cos, tg, ctg, arcsin, arccos, arctg, arcctg в некотором порядке, получить число 2010? (Каждую функцию можно использовать сколько угодно раз.)
Есть два платка: один в форме квадрата, другой – в форме правильного треугольника, причём их периметры одинаковы.
Cуществует ли многогранник, который можно полностью оклеить этими двумя платками без наложений (платки можно сгибать, но нельзя резать)?
Многоугольник можно разрезать на две равные части тремя различными способами. Верно ли, что у него обязательно есть центр или ось симметрии?
Можно ли, применяя к числу 2 функции sin, cos, tg, ctg, arcsin, arccos, arctg, arcctg в любом количестве и в любом порядке, получить число 2010?
Две точки на плоскости несложно соединить тремя ломаными так, чтобы получилось два равных многоугольника (например, как на рис.). Соедините две точки четырьмя ломаными так, чтобы все три получившихся многоугольника были равны. (Ломаные несамопересекающиеся и не имеют общих точек, кроме концов.) <div align="center"><img align="absmiddle" src="/storage/problem-media/111909/problem_111909_img_2.gif"> </div>
Нарисуйте многоугольник и точку на его границе так, что любая прямая, проходящая через эту точку, делит площадь этого многоугольника пополам.
В невыпуклом шестиугольнике каждый угол равен либо 90, либо 270 градусов. Верно ли, что при некоторых длинах сторон его можно разрезать на два подобных ему и неравных между собой шестиугольника?
Может ли развертка тетраэдра оказаться треугольником со сторонами 3, 4 и 5 (тетраэдр можно резать только по ребрам)?
На берегу круглого озера растут 6 сосен. Известно, что если взять такие два треугольника, что вершины одного совпадают с тремя из сосен, а вершины другого – с тремя другими, то в середине отрезка, соединяющего точки пересечения высот этих треугольников, на дне озера находится клад. Неизвестно только, как нужно разбить данные шесть точек на две тройки. Сколько раз придётся опуститься на дно озера, чтобы наверняка отыскать клад?
Рассматривается выпуклый четырёхугольник <i>ABCD</i>. Пары его противоположных сторон продолжены до пересечения: <i>AB</i> и <i>CD</i> – в точке <i>P, CB</i> и <i>DA</i> – в точке <i>Q</i>. Пусть <i>l<sub>A</sub>, l<sub>B</sub>, l<sub>C</sub></i> и <i>l<sub>D</sub></i> – биссектрисы внешних углов четырёхугольника при вершинах соответственно <i>A, B, C, D</i>. Пусть <i>l<sub>P</sub></i> и <i>l<sub>Q</sub></i> – внешние биссектрисы углов соответственно <i>A<sub>PD</sub></i> и <i>A<sub>QB</sub></i> (то есть биссектрисы углов, дополняющих эти угл...
Назовём <i>белыми</i> числа вида $\sqrt{a+b\sqrt{2}}$, где $a$ и $b$ — целые, не равные нулю. Аналогично, назовём <i>чёрными</i> числа вида $\sqrt{c+d\sqrt{7}}$, где $c$ и $d$ — целые, не равные нулю. Может ли чёрное число равняться сумме нескольких белых?
Верны ли утверждения:
а) Если многоугольник можно разбить ломаной на два равных многоугольника, то его можно разбить отрезком на два равных многоугольника.
б) Если выпуклый многоугольник можно разбить ломаной на два равных многоугольника, то его можно разбить отрезком на два равных многоугольника.
в) Если выпуклый многоугольник можно разбить ломаной на два многоугольника, которые можно перевести друг в друга движением, сохраняющим ориентацию (то есть поворотом или параллельным переносом), то его можно разбить отрезком на два многоугольника, которые можно перевести друг в друга таким же движением.
Существует ли такой невыпуклый многогранник, что из некоторой точки <i>М</i>, лежащей вне него, не видна ни одна из его вершин?
(Многогранник сделан из непрозрачного материала, так что сквозь него ничего не видно.)
Верно ли, что любой треугольник можно разрезать на 1000 частей, из которых можно сложить квадрат?
Разрежьте круг на несколько равных частей так, чтобы центр круга не лежал на границе хотя бы одной из них.
Назовём<i>полоской</i>клетчатый многоугольник, который можно пройти целиком, начав из какой-то его клетки и далее двигаясь только в двух направлениях — вверх или вправо. Несколько таких одинаковых полосок можно вставить друг в друга, сдвигая на вектор (–1, 1). Докажите, что для любой полоски, состоящей из чётного числа клеток, найдётся такое нечётное $k$, что если объединить $k$ таких же полосок, вставив их последовательно друг в друга, то полученный многоугольник можно будет разделить по линиям сетки на две равные части. (На рисунке приведён пример.)<img width="200" src="/storage/problem-media/67435/problem_67435_img_2.png">
Для каждого из чисел 1, 19, 199, 1999 и т. д. изготовили одну отдельную карточку и записали на ней это число. а) Можно ли выбрать не менее трёх карточек так, чтобы сумма чисел на них равнялась числу, все цифры которого, кроме одной, – двойки?
б) Пусть выбрали несколько карточек так, что сумма чисел на них равна числу, все цифры которого, кроме одной, – двойки. Какой может быть его цифра, отличная от двойки?
Требуется записать число вида 7...7, используя только семёрки (их можно писать и по одной, и по нескольку штук подряд), причём разрешены только сложение, вычитание, умножение, деление и возведение в степень, а также скобки. Для числа 77 самая короткая запись – это просто 77. А существует ли число вида 7...7, которое можно записать по этим правилам, используя меньшее количество семёрок, чем в его десятичной записи?
Криволинейный многоугольник – это многоугольник, стороны которого – дуги окружностей. Существуют ли такой криволинейный многоугольник <i>P</i> и такая точка <i>A</i> на его границе, что каждая прямая, проходящая через точку <i>A</i>, делит периметр многоугольника <i>P</i> на два куска равной длины?
В треугольнике <i>ABC</i> на стороне <i>BC</i> отмечена точка <i>K</i>. В треугольники <i>ABK</i> и <i>ACK</i> вписаны окружности, первая касается стороны <i>BC</i> в точке <i>M</i>, вторая – в точке <i>N</i>. Докажите, что <i>BM·CN > KM·KN</i>.
На плоскости даны парабола <i>y = x</i>² и окружность, имеющие ровно две общие точки: <i>A</i> и <i>B</i>. Оказалось, что касательные к окружности и параболе в точке <i>A</i> совпадают. Обязательно ли тогда касательные к окружности и параболе в точке <i>B</i> также совпадают?
Дана коробка (прямоугольный параллелепипед), по поверхности (но не внутри) которой ползает муравей. Изначально муравей сидит в углу. Верно ли, что среди всех точек поверхности на наибольшем расстоянии от муравья находится противоположный угол? (Расстоянием между двумя точками считаем длину соединяющего их кратчайшего пути <i>по поверхности параллелепипеда</i>.)
Бумажный тетраэдр разрезали по трём ребрам, не принадлежащим одной грани. Могло ли случиться, что полученную развёртку нельзя расположить на плоскости без самопересечений (в один слой).
а) Докажите, что найдётся многоугольник, который можно разделить отрезком на две равные части так, что этот отрезок разделит одну из сторон многоугольника пополам, а другую – в отношении 1 : 2. б) Найдётся ли выпуклый многоугольник с таким свойством?
Внутри некоторого тетраэдра взяли произвольную точку <i>X</i>. Через каждую вершину тетраэдра провели прямую, параллельную отрезку, соединяющему <i>X</i> с точкой пересечения медиан противоположной грани. Докажите, что четыре полученные прямые пересекаются в одной точке.