Олимпиадные задачи по математике для 3-9 класса - сложность 1-5 с решениями

Существует ли конечное слово из букв русского алфавита, в котором нет двух соседних одинаковых подслов, но таковые появляются при приписывании (как справа, так и слева) любой буквы русского алфавита.Комментарий.<i>Словом</i>мы называем любую последовательность букв русского алфавита, не обязательно осмысленную,<i>подсловом</i>называется любой фрагмент слова. Например, АБВШГАБ - слово, а АБВ, Ш, ШГАБ - его подслова.

В углу шахматной доски размером <i>n×n</i> полей стоит ладья. При каких <i>n</i>, чередуя горизонтальные и вертикальные ходы, она может за <i>n</i>² ходов побывать на всех полях доски и вернуться на место? (Учитываются только поля, на которых ладья останавливалась, а не те, над которыми она проносилась во время хода.)

В стране несколько городов, соединённых дорогами с односторонним и двусторонним движением. Известно, что из каждого города в любой другой можно проехать ровно одним путём, не проходящим два раза через один и тот же город. Докажите, что страну можно разделить на три губернии так, чтобы ни одна дорога не соединяла два города из одной губернии.

Система укреплений состоит из блиндажей. Некоторые из блиндажей соединены траншеями, причём из каждого блиндажа можно перебежать в какой-нибудь другой. В одном из блиндажей спрятался пехотинец. Пушка может одним выстрелом накрыть любой блиндаж. В каждом промежутке между выстрелами пехотинец обязательно перебегает по одной из траншей в соседний блиндаж (даже если по соседнему блиндажу только что стреляла пушка, пехотинец может туда перебежать). Назовём систему <i>надёжной</i>, если у пушки нет гарантированной стратегии поражения пехотинца (то есть такой последовательности выстрелов, благодаря которой пушка поразит пехотинца независимо от его начального местонахождения и последующих передвижений). <div align="center"><img src="/storage/problem-media/1050...

В распоряжении юного паркетчика имеется 10 одинаковых плиток, каждая из которых состоит из 4 квадратов и имеет форму буквы Г (все плитки ориентированы одинаково). Может ли он составить из них прямоугольник размером 5×8? (Плитки можно поворачивать, но нельзя переворачивать. Например, на рисунке изображено неверное решение: заштрихованная плитка неправильно ориентирована.)<img src="/storage/problem-media/103885/problem_103885_img_2.gif">

Прямоугольник разрезан на несколько прямоугольников, периметр каждого из которых – целое число метров.

Верно ли, что периметр исходного прямоугольника – тоже целое число метров?

Отметьте на доске 8×8 несколько клеток так, чтобы любая (в том числе и любая отмеченная) клетка граничила по стороне ровно с одной отмеченной клеткой.

Наташа и Инна купили по одинаковой коробке чая в пакетиках. Известно, что одного пакетика хватает на две или три чашки чая. Этой коробки Наташе хватило на 41 чашку чая, а Инне – на 58. Сколько пакетиков было в коробке?

В одной из вершин куба<i>ABCDEFGH</i>сидит заяц, но охотникам он не виден. Три охотника стреляют залпом, при этом они могут ''поразить'' любые три вершины куба. Если они не попадают в зайца, то до следующего залпа заяц перебегает в одну из трёх соседних (по ребру) вершин куба. Укажите, как стрелять охотникам, чтобы обязательно попасть в зайца за четыре залпа. (В решении достаточно написать четыре тройки вершин, в которые последовательно стреляют охотники.)

<img src="/storage/problem-media/103852/problem_103852_img_2.gif">

Придумайте раскраску граней кубика, чтобы в трёх различных положениях он выглядел, как показано на рисунке. (Укажите, как раскрасить невидимые грани, или нарисуйте развёртку.)<img src="/storage/problem-media/103816/problem_103816_img_2.gif">

Разрежьте изображённую на рисунке доску на четыре одинаковые части, чтобы каждая из них содержала три заштрихованные клетки. <img src="/storage/problem-media/103815/problem_103815_img_2.gif">

В папирусе Ринда (Древний Египет) среди прочих сведений содержатся разложения дробей в сумму дробей с числителем 1, например,

<sup>2</sup>/<sub>73</sub> = <sup>1</sup>/<sub>60</sub> + <sup>1</sup>/<sub>219</sub> + <sup>1</sup>/<sub>292</sub> + <sup>1</sup>/<sub><i>x</i></sub>. Один из знаменателей здесь заменён буквой <i>x</i>. Найдите этот знаменатель.

Покрасьте клетки доски 5×5 в пять цветов так, чтобы в каждом горизонтальном ряду, в каждом вертикальном ряду и в каждом выделенном блоке встречались все цвета. <img src="/storage/problem-media/103805/problem_103805_img_2.gif">

Три человека <i>A, B, C</i> пересчитали кучу шариков четырёх цветов (см. таблицу). <div align="center"><img src="/storage/problem-media/103803/problem_103803_img_2.gif"></div>При этом каждый из них правильно различал какие-то два цвета, а два других мог путать: один путал красный и оранжевый, другой – оранжевый и жёлтый, а третий – жёлтый и зелёный. Результаты их подсчётов приведены в таблице. Сколько каких шариков было на самом деле?

Из натурального числа вычли сумму его цифр, из полученного числа снова вычли сумму его (полученного числа) цифр и т.д. После одиннадцати таких вычитаний получился нуль. С какого числа начинали?

За два года завод снизил объём выпускаемой продукции на 51%. При этом каждый год объём выпускаемой продукции снижался на одно и то же число процентов. На сколько?

Решите уравнение:<div align="CENTER"> 1993 = 1 + 8 : (1 + 8 : (1 - 8 : (1 + 4 : (1 - 4 : (1 - 8 : <i>x</i>))))). </div>

Можно ли в центры 16 клеток шахматной доски 8×8 вбить гвозди так, чтобы никакие три гвоздя не лежали на одной прямой?

Али-Баба стоит с большим мешком монет в углу пустой прямоугольной пещеры размером <i>m×n</i> клеток, раскрашенных в шахматном порядке. Из любой клетки он может сделать шаг в любую из четырёх соседних клеток (вверх, вниз, вправо или влево). При этом он должен либо положить одну монету в этой клетке, либо забрать из неё одну монету, если, конечно, она не пуста. Может ли после прогулки Али-Бабы по пещере оказаться, что на чёрных клетках лежит ровно по одной монете, а на белых монет нет?

Если у числа<i>x</i>подсчитать сумму цифр и с полученным числом повторить это ещё два раза, то получится ещё три числа. Найдите самое маленькое<i>x</i>, для которого все четыре числа различны, а последнее из них равно 2.

Инопланетянин со звезды Тау Кита, прилетев на Землю в понедельник, воскликнул: ''А!''. Во вторник он воскликнул: ''АУ!'', в среду — ''АУУА!'', в четверг — ''АУУАУААУ!''. Что он воскликнет в субботу?

Раскрасьте плоскость в три цвета так, чтобы на каждой прямой были точки не более, чем двух цветов, и каждый цвет был бы использован.

Отметьте на плоскости 6 точек так, чтобы от каждой на расстоянии 1 находилось ровно три точки.

Существуют ли такие иррациональные числа <i>a</i> и <i>b</i>, что  <i>a </i> > 1,  <i>b</i> > 1,  и  [<i>a<sup>m</sup></i>]  отлично от  [<i>b<sup>n</sup></i>]  при любых натуральных числах <i>m</i> и <i>n</i>?

Натуральные числа <i>a, b, c, d</i> таковы, что <i>ad – bc</i> > 1.  Докажите, что хотя бы одно из чисел <i>a, b, c, d</i> не делится на  <i>ad – bc</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка