Олимпиадные задачи по математике для 5-8 класса - сложность 1-2 с решениями
В углу шахматной доски размером <i>n×n</i> полей стоит ладья. При каких <i>n</i>, чередуя горизонтальные и вертикальные ходы, она может за <i>n</i>² ходов побывать на всех полях доски и вернуться на место? (Учитываются только поля, на которых ладья останавливалась, а не те, над которыми она проносилась во время хода.)
В распоряжении юного паркетчика имеется 10 одинаковых плиток, каждая из которых состоит из 4 квадратов и имеет форму буквы Г (все плитки ориентированы одинаково). Может ли он составить из них прямоугольник размером 5×8? (Плитки можно поворачивать, но нельзя переворачивать. Например, на рисунке изображено неверное решение: заштрихованная плитка неправильно ориентирована.)<img src="/storage/problem-media/103885/problem_103885_img_2.gif">
Прямоугольник разрезан на несколько прямоугольников, периметр каждого из которых – целое число метров.
Верно ли, что периметр исходного прямоугольника – тоже целое число метров?
Отметьте на доске 8×8 несколько клеток так, чтобы любая (в том числе и любая отмеченная) клетка граничила по стороне ровно с одной отмеченной клеткой.
Наташа и Инна купили по одинаковой коробке чая в пакетиках. Известно, что одного пакетика хватает на две или три чашки чая. Этой коробки Наташе хватило на 41 чашку чая, а Инне – на 58. Сколько пакетиков было в коробке?
Придумайте раскраску граней кубика, чтобы в трёх различных положениях он выглядел, как показано на рисунке. (Укажите, как раскрасить невидимые грани, или нарисуйте развёртку.)<img src="/storage/problem-media/103816/problem_103816_img_2.gif">
Разрежьте изображённую на рисунке доску на четыре одинаковые части, чтобы каждая из них содержала три заштрихованные клетки. <img src="/storage/problem-media/103815/problem_103815_img_2.gif">
В папирусе Ринда (Древний Египет) среди прочих сведений содержатся разложения дробей в сумму дробей с числителем 1, например,
<sup>2</sup>/<sub>73</sub> = <sup>1</sup>/<sub>60</sub> + <sup>1</sup>/<sub>219</sub> + <sup>1</sup>/<sub>292</sub> + <sup>1</sup>/<sub><i>x</i></sub>. Один из знаменателей здесь заменён буквой <i>x</i>. Найдите этот знаменатель.
Покрасьте клетки доски 5×5 в пять цветов так, чтобы в каждом горизонтальном ряду, в каждом вертикальном ряду и в каждом выделенном блоке встречались все цвета. <img src="/storage/problem-media/103805/problem_103805_img_2.gif">
Три человека <i>A, B, C</i> пересчитали кучу шариков четырёх цветов (см. таблицу). <div align="center"><img src="/storage/problem-media/103803/problem_103803_img_2.gif"></div>При этом каждый из них правильно различал какие-то два цвета, а два других мог путать: один путал красный и оранжевый, другой – оранжевый и жёлтый, а третий – жёлтый и зелёный. Результаты их подсчётов приведены в таблице. Сколько каких шариков было на самом деле?
Из натурального числа вычли сумму его цифр, из полученного числа снова вычли сумму его (полученного числа) цифр и т.д. После одиннадцати таких вычитаний получился нуль. С какого числа начинали?
За два года завод снизил объём выпускаемой продукции на 51%. При этом каждый год объём выпускаемой продукции снижался на одно и то же число процентов. На сколько?
Решите уравнение:<div align="CENTER"> 1993 = 1 + 8 : (1 + 8 : (1 - 8 : (1 + 4 : (1 - 4 : (1 - 8 : <i>x</i>))))). </div>
Можно ли в центры 16 клеток шахматной доски 8×8 вбить гвозди так, чтобы никакие три гвоздя не лежали на одной прямой?
Если у числа<i>x</i>подсчитать сумму цифр и с полученным числом повторить это ещё два раза, то получится ещё три числа. Найдите самое маленькое<i>x</i>, для которого все четыре числа различны, а последнее из них равно 2.
Инопланетянин со звезды Тау Кита, прилетев на Землю в понедельник, воскликнул: ''А!''. Во вторник он воскликнул: ''АУ!'', в среду — ''АУУА!'', в четверг — ''АУУАУААУ!''. Что он воскликнет в субботу?
Раскрасьте плоскость в три цвета так, чтобы на каждой прямой были точки не более, чем двух цветов, и каждый цвет был бы использован.
Отметьте на плоскости 6 точек так, чтобы от каждой на расстоянии 1 находилось ровно три точки.
Дан куб с ребром длины <i>n</i> см. В нашем распоряжении имеется длинный кусок изоляционной ленты шириной 1 см. Требуется обклеить куб лентой, при этом лента может свободно переходить через ребро на другую грань, по грани она должна идти по прямой параллельно ребру и не свисать с грани вбок. На сколько кусков необходимо разрезать ленту, чтобы обклеить куб?