Олимпиадные задачи по математике для 4-8 класса - сложность 3 с решениями
В выпуклом пятиугольнике <i>P</i> провели все диагонали, в результате чего он оказался разбитым на десять треугольников и один пятиугольник <i>P'</i>. Из суммы площадей треугольников, прилегающих к сторонам <i>P</i>, вычли площадь <i>P'</i>; получилось число <i>N</i>. Совершив те же операции с пятиугольником <i>P'</i>, получили число <i>N'</i>. Докажите, что <i>N > N'</i>.
У каждого жителя города Тьмутаракань есть свои тараканы, не у всех поровну. Два таракана являются <i>товарищами</i>, если у них общий хозяин (в частности, каждый таракан сам себе товарищ). Что больше: среднее количество тараканов, которыми владеет житель города, или среднее количество товарищей у таракана?
<i>a</i> и <i>b</i> – натуральные числа. Покажите, что если 4<i>ab</i> – 1 делит (4<i>a</i>² – 1)², то <i>a = b</i>.
Найдите все такие пары (<i>x, y</i>) целых чисел, что 1 + 2<i><sup>x</sup></i> + 2<sup>2<i>x</i>+1</sup> = <i>y</i>².
Точка<i>I</i>– центр вписанной окружности треугольника<i>ABC</i>. Внутри треугольника выбрана точка<i>P</i>такая, что <center> <font face="Symbol">Ð</font><i>PBA</i> + <font face="Symbol">Ð</font><i>PCA</i> = <font face="Symbol">Ð</font><i>PBC</i> + <font face="Symbol">Ð</font><i>PCB.</i></center> Докажите, что<i>AP</i>≥<i>AI</i>, причём равенство выполняется тогда и только тогда, когда<i>P</i>совпадает с<i>I</i>.
Все вершины треугольника<i> ABC </i>лежат внутри квадрата<i> K </i>. Докажите, что если все их отразить симметрично относительно точки пересечения медиан треугольника<i> ABC </i>, то хотя бы одна из полученных трех точек окажется внутри<i> K </i>.
Числа от 1 до 1000000 покрашены в два цвета – чёрный и белый. За ход разрешается выбрать любое число от 1 до 1000000 и перекрасить его и все числа, не взаимно простые с ним, в противоположный цвет. Вначале все числа были чёрными. Можно ли за несколько ходов добиться того, что все числа станут белыми?
Окружность <i>S</i><sub>1</sub>, проходящая через вершины <i>A</i> и <i>B</i> треугольника <i>ABC</i>, пересекает сторону <i>BC</i> в точке <i>D</i>. Окружность <i>S</i><sub>2</sub>, проходящая через вершины <i>B</i> и <i>C</i>, пересекает сторону <i>AB</i> в точке <i>E</i> и окружность <i>S</i><sub>1</sub> вторично в точке <i>F</i>. Оказалось, что точки <i>A, E, D, C</i> лежат на окружности <i>S</i><sub>3</sub> с центром <i>O</i>. Докажите, что угол <i>BFO</i> – прямой.
Единичный квадрат разбит на конечное число квадратиков (размеры которых могут различаться). Может ли сумма периметров квадратиков, пересекающихся с главной диагональю, быть больше 1993? (Если квадратик пересекается с диагональю по одной точке, это тоже считается пересечением.)
На прямой стоят две фишки, слева – красная, справа – синяя. Разрешается производить любую из двух операций: вставку двух фишек одного цвета подряд в любом месте прямой и удаление любых двух соседних одноцветных фишек. Можно ли за конечное число операций оставить на прямой ровно две фишки: красную справа, а синюю – слева?
Существует ли натуральное число, делящееся на 1998, сумма цифр которого меньше 27?
Бильярдный стол имеет форму многоугольника (не обязательно выпуклого), у которого соседние стороны перпендикулярны друг другу. Вершины этого многоугольника – лузы, при попадании в которые шар там и остаётся. Из вершины <i>A</i> с (внутренним) углом 90° выпущен шар, который отражается от бортов (сторон многоугольника) по закону "угол падения равен углу отражения". Докажите, что он никогда не вернётся в вершину <i>A</i>.
Докажите, что у выпуклого 10<i>n</i>-гранника найдётся <i>n</i> граней с одинаковым числом сторон.
Для каждого целого неотрицательного числа <i>i</i> определим число <i>M</i>(<i>i</i>) следующим образом: запишем число <i>i</i> в двоичной форме; если число единиц в этой записи чётно, то <i>M</i>(<i>i</i>) = 0, а если нечётно – то 1 (первые члены этой последовательности: 0, 1, 1, 0, 1, 0, 0, 1, ... ).
а) Рассмотрим конечную последовательность <i>M</i>(0), <i>M</i>(1), ... , <i>M</i>(1000). Докажите, что число членов этой последовательности, равных своему правому соседу, не меньше 320.
б) Рассмотрим конечную последовательность <i>M</i>(0), <i>M</i>(1), ..., <i>M</i>(1000000). Докажите, что число таких членов последовательности, что &...
На доске написано несколько целых положительных чисел: <i>a</i><sub>0</sub>, <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ... , <i>a<sub>n</sub></i>. Пишем на другой доске следующие числа: <i>b</i><sub>0</sub> – сколько всего чисел на первой доске, <i>b</i><sub>1</sub> – сколько там чисел, больших единицы, <i>b</i><sub>2</sub> – сколько чисел, больших двойки, и т.д., пока получаются положительные числа. На этом заканчиваем – нули не пишем. На третьей доске пишем числа <i>c</i><sub>0</sub>, <i>c</i><sub>1</sub>, <i>c</i><sub>2</sub>, ... , построенные по ч...
Группа психологов разработала тест, пройдя который, каждый человек получает оценку – число <i>Q</i> – показатель его умственных способностей (чем больше <i>Q</i>, тем больше способности). За <i>рейтинг</i> страны принимается среднее арифметическое значений <i>Q</i> всех жителей этой страны.
а) Группа граждан страны А эмигрировала в страну Б. Покажите, что при этом у обеих стран мог вырасти рейтинг.
б) После этого группа граждан страны Б (в числе которых могут быть и бывшие эмигранты из А) эмигрировала в страну А. Возможно ли, что рейтинги обеих стран опять выросли?
в) Группа граждан страны А эмигрировала в страну Б, а группа граждан Б – в страну В. В результате этого рейтинги каждой страны оказались выше первоначальных. После э...
Играют двое, ходят по очереди. Первый ставит на плоскости красную точку, второй в ответ ставит на свободные места 10 синих точек. Затем опять первый ставит на свободное место красную точку, второй ставит на свободные места 10 синих, и т.д. Первый считается выигравшим, если какие-то три красные точки образуют правильный треугольник. Может ли второй ему помешать?
Кузнечик вначале сидит в точке <i>M</i> плоскости <i>Oxy</i> вне квадрата 0 ≤ <i>x</i> ≤ 1, 0 ≤ <i>y</i> ≤ 1 (координаты <i>M</i> – нецелые, расстояние от <i>M</i> до центра квадрата равно <i>d</i>). Кузнечик прыгает в точку, симметричную <i>M</i> относительно самой правой (с точки зрения кузнечика) вершины квадрата. Докажите, что за несколько таких прыжков кузнечик не сможет удалиться от центра квадрата более чем на 10<i>d</i>.
Может ли случиться, что шесть попарно непересекающихся параллелепипедов расположены в пространстве так, что из некоторой им не принадлежащей точки пространства не видно ни одной из их вершин? (Параллелепипеды непрозрачны.)
Периоды двух последовательностей – <i>m</i> и <i>n</i> – взаимно простые числа. Какова максимальная длина начального куска, который может у них совпадать?
Периоды двух последовательностей – 7 и 13. Какова максимальная длина начального куска, который может у них совпадать?
В ящиках лежат орехи. Известно, что в среднем в каждом ящике 10 орехов, а среднее арифметическое квадратов чисел орехов в ящиках меньше 1000. Докажите, что по крайней мере 10% ящиков не пустые.
Выпуклый 1993-угольник разрезан на выпуклые семиугольники.
Докажите, что найдутся четыре соседние вершины 1993-угольника, принадлежащие одному семиугольнику.
(Вершина семиугольника не может лежать внутри стороны 1993-угольника.)
На доску последовательно записываются натуральные числа. На <i>n</i>-м шаге (когда написаны числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub><i>n</i>–1</sub>) пишется любое число, которое нельзя представить в виде суммы <i>a</i><sub>1</sub><i>k</i><sub>1</sub> + <i>a</i><sub>2</sub><i>k</i><sub>2</sub> + ... + <i>a</i><sub><i>n</i>–1</sub><i>k</i><sub><i>n</i>–1</sub>, где <i>k<sub>i</sub></i> – целые неотрицательные числа (на <i>a</i><sub>1</sub> никаких огран...
На отрезке [<i>a, b</i>] отмечено несколько синих и красных точек. Две точки одного цвета, между которыми нет отмеченных точек, разрешается стереть. Разрешается также отметить две точки одного цвета, красные или синие, так, чтобы между ними не было других отмеченных точек. Первоначально было отмечено две точки: <i>a</i> – синяя и <i>b</i> – красная. Можно ли сделать несколько разрешенных пребразований так, чтобы в результате было опять две отмеченные точки: <i>a</i> – красная и <i>b</i> – синяя?