Олимпиадные задачи по математике для 6-8 класса - сложность 2-3 с решениями
В выпуклом пятиугольнике <i>P</i> провели все диагонали, в результате чего он оказался разбитым на десять треугольников и один пятиугольник <i>P'</i>. Из суммы площадей треугольников, прилегающих к сторонам <i>P</i>, вычли площадь <i>P'</i>; получилось число <i>N</i>. Совершив те же операции с пятиугольником <i>P'</i>, получили число <i>N'</i>. Докажите, что <i>N > N'</i>.
Сумма цифр натурального числа <i>n</i> равна 100. Может ли сумма цифр числа <i>n</i>³ равняться 1000000?
Известно, что сумма любых двух из трёх квадратных трёхчленов <i>x</i>² + <i>ax + b</i>, <i>x</i>² + <i>cx + d</i>, <i>x</i>² + <i>ex + f</i> не имеет корней.
Может ли сумма всех этих трёхчленов иметь корни?
У каждого жителя города Тьмутаракань есть свои тараканы, не у всех поровну. Два таракана являются <i>товарищами</i>, если у них общий хозяин (в частности, каждый таракан сам себе товарищ). Что больше: среднее количество тараканов, которыми владеет житель города, или среднее количество товарищей у таракана?
<i>a</i> и <i>b</i> – натуральные числа. Покажите, что если 4<i>ab</i> – 1 делит (4<i>a</i>² – 1)², то <i>a = b</i>.
Найдите все такие пары (<i>x, y</i>) целых чисел, что 1 + 2<i><sup>x</sup></i> + 2<sup>2<i>x</i>+1</sup> = <i>y</i>².
Точка<i>I</i>– центр вписанной окружности треугольника<i>ABC</i>. Внутри треугольника выбрана точка<i>P</i>такая, что <center> <font face="Symbol">Ð</font><i>PBA</i> + <font face="Symbol">Ð</font><i>PCA</i> = <font face="Symbol">Ð</font><i>PBC</i> + <font face="Symbol">Ð</font><i>PCB.</i></center> Докажите, что<i>AP</i>≥<i>AI</i>, причём равенство выполняется тогда и только тогда, когда<i>P</i>совпадает с<i>I</i>.
Все вершины треугольника<i> ABC </i>лежат внутри квадрата<i> K </i>. Докажите, что если все их отразить симметрично относительно точки пересечения медиан треугольника<i> ABC </i>, то хотя бы одна из полученных трех точек окажется внутри<i> K </i>.
Числа от 1 до 1000000 покрашены в два цвета – чёрный и белый. За ход разрешается выбрать любое число от 1 до 1000000 и перекрасить его и все числа, не взаимно простые с ним, в противоположный цвет. Вначале все числа были чёрными. Можно ли за несколько ходов добиться того, что все числа станут белыми?
Окружность <i>S</i><sub>1</sub>, проходящая через вершины <i>A</i> и <i>B</i> треугольника <i>ABC</i>, пересекает сторону <i>BC</i> в точке <i>D</i>. Окружность <i>S</i><sub>2</sub>, проходящая через вершины <i>B</i> и <i>C</i>, пересекает сторону <i>AB</i> в точке <i>E</i> и окружность <i>S</i><sub>1</sub> вторично в точке <i>F</i>. Оказалось, что точки <i>A, E, D, C</i> лежат на окружности <i>S</i><sub>3</sub> с центром <i>O</i>. Докажите, что угол <i>BFO</i> – прямой.
Единичный квадрат разбит на конечное число квадратиков (размеры которых могут различаться). Может ли сумма периметров квадратиков, пересекающихся с главной диагональю, быть больше 1993? (Если квадратик пересекается с диагональю по одной точке, это тоже считается пересечением.)
На прямой стоят две фишки, слева – красная, справа – синяя. Разрешается производить любую из двух операций: вставку двух фишек одного цвета подряд в любом месте прямой и удаление любых двух соседних одноцветных фишек. Можно ли за конечное число операций оставить на прямой ровно две фишки: красную справа, а синюю – слева?
Существует ли натуральное число, делящееся на 1998, сумма цифр которого меньше 27?
Можно ли найти восемь таких натуральных чисел, что ни одно из них не делится ни на какое другое, но квадрат любого из этих чисел делится на каждое из остальных?
Бильярдный стол имеет форму многоугольника (не обязательно выпуклого), у которого соседние стороны перпендикулярны друг другу. Вершины этого многоугольника – лузы, при попадании в которые шар там и остаётся. Из вершины <i>A</i> с (внутренним) углом 90° выпущен шар, который отражается от бортов (сторон многоугольника) по закону "угол падения равен углу отражения". Докажите, что он никогда не вернётся в вершину <i>A</i>.
Существуют ли такие три квадратных трёхчлена, что каждый из них имеет два различных действительных корня, а сумма любых двух из них действительных корней не имеет?
Существуют ли такие три квадратных трёхчлена, что каждый из них имеет корень, а сумма любых двух из них корней не имеет?
На доске в лаборатории написаны два числа. Каждый день старший научный сотрудник Петя стирает с доски оба числа и пишет вместо них их среднее арифметическое и среднее гармоническое. Утром первого дня на доске были написаны числа 1 и 2. Найдите произведение чисел, записанных на доске вечером 1999-го дня.
Докажите, что у выпуклого 10<i>n</i>-гранника найдётся <i>n</i> граней с одинаковым числом сторон.
Для каждого целого неотрицательного числа <i>i</i> определим число <i>M</i>(<i>i</i>) следующим образом: запишем число <i>i</i> в двоичной форме; если число единиц в этой записи чётно, то <i>M</i>(<i>i</i>) = 0, а если нечётно – то 1 (первые члены этой последовательности: 0, 1, 1, 0, 1, 0, 0, 1, ... ).
а) Рассмотрим конечную последовательность <i>M</i>(0), <i>M</i>(1), ... , <i>M</i>(1000). Докажите, что число членов этой последовательности, равных своему правому соседу, не меньше 320.
б) Рассмотрим конечную последовательность <i>M</i>(0), <i>M</i>(1), ..., <i>M</i>(1000000). Докажите, что число таких членов последовательности, что &...
Игра происходит на квадрате клетчатой бумаги 9×9. Играют двое, ходят по очереди. Начинающий игру ставит в свободные клетки крестики, его партнер – нолики. Когда все клетки заполнены, подсчитывается количество К строк и столбцов, в которых крестиков больше, чем ноликов,и количество Н строк и столбцов, в которых ноликов больше, чем крестиков. Разность В = К – Н считается выигрышем игрока, который начинает. Найдите такое значение B, что
1) первый игрок может обеспечить себе выигрыш не меньше B, как бы ни играл второй игрок;
2) второй игрок всегда может добиться того, что первый получит выигрыш не больше B, как бы тот ни играл.
На доске написано несколько целых положительных чисел: <i>a</i><sub>0</sub>, <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ... , <i>a<sub>n</sub></i>. Пишем на другой доске следующие числа: <i>b</i><sub>0</sub> – сколько всего чисел на первой доске, <i>b</i><sub>1</sub> – сколько там чисел, больших единицы, <i>b</i><sub>2</sub> – сколько чисел, больших двойки, и т.д., пока получаются положительные числа. На этом заканчиваем – нули не пишем. На третьей доске пишем числа <i>c</i><sub>0</sub>, <i>c</i><sub>1</sub>, <i>c</i><sub>2</sub>, ... , построенные по ч...
Группа психологов разработала тест, пройдя который, каждый человек получает оценку – число <i>Q</i> – показатель его умственных способностей (чем больше <i>Q</i>, тем больше способности). За <i>рейтинг</i> страны принимается среднее арифметическое значений <i>Q</i> всех жителей этой страны.
а) Группа граждан страны А эмигрировала в страну Б. Покажите, что при этом у обеих стран мог вырасти рейтинг.
б) После этого группа граждан страны Б (в числе которых могут быть и бывшие эмигранты из А) эмигрировала в страну А. Возможно ли, что рейтинги обеих стран опять выросли?
в) Группа граждан страны А эмигрировала в страну Б, а группа граждан Б – в страну В. В результате этого рейтинги каждой страны оказались выше первоначальных. После э...
Куб со стороной 20 разбит на 8000 единичных кубиков, и в каждом кубике записано число. Известно, что в каждом столбике из 20 кубиков, параллельном ребру куба, сумма чисел равна 1 (рассматриваются столбики всех трёх направлений). В некотором кубике записано число 10. Через этот кубик проходит три <i>слоя</i> 1×20×20, параллельных граням куба. Найдите сумму всех чисел вне этих слоёв.
На клетчатой доске 5×5 расставили максимальное число шахматных коней так, чтобы они не били друг друга.
Докажите, что такая расстановка единственна.