Олимпиадные задачи по теме «Алгебраические неравенства и системы неравенств» для 2-9 класса - сложность 4 с решениями

Для положительных чисел <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i> докажите неравенство   <img align="absmiddle" src="/storage/problem-media/111769/problem_111769_img_2.gif">

Определите наименьшее действительное число <i>M</i>, при котором неравенство   |<i>ab</i>(<i>a</i>² – <i>b</i>²) + <i>bc</i>(<i>b</i>² – <i>c</i>²) + <i>ca</i>(<i>c</i>² – <i>a</i>²)| ≤ <i>M</i>(<i>a</i>² + <i>b</i>² + <i>c</i>²)²   выполняется для любых действительных чисел <i>a, b, c</i>.

Найдите все такие пары  (<i>x, y</i>)  натуральных чисел, что  <i>x + y = a<sup>n</sup>,  x</i>² + <i>y</i>² = <i>a<sup>m</sup></i>  для некоторых натуральных <i>a, n, m</i>.

На окружности расположена тысяча непересекающихся дуг, и на каждой из них написаны два натуральных числа. Сумма чисел каждой дуги делится на произведение чисел дуги, следующей за ней по часовой стрелке. Каково наибольшее возможное значение наибольшего из написанных чисел?

В последовательности натуральных чисел {<i>a<sub>n</sub></i>},  <i>n</i> = 1, 2, ...,  каждое натуральное число встречается хотя бы один раз, и для любых различных <i>n</i> и <i>m</i> выполнено неравенство   <img align="absmiddle" src="/storage/problem-media/109941/problem_109941_img_2.gif">   Докажите, что тогда  |<i>a<sub>n</sub> – n</i>| < 2000000  для всех натуральных <i>n</i>.

Дано дерево с <i>n</i> вершинами,  <i>n</i> ≥ 2.  В его вершинах расставлены числа <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>x<sub>n</sub></i>, а на каждом ребре записано произведение чисел, стоящих в концах этого ребра. Обозначим через <i>S</i> сумму чисел на всех рёбрах. Докажите, что   <img align="absmiddle" src="/storage/problem-media/109782/problem_109782_img_2.gif">

В Думе 1600 депутатов, которые образовали 16000 комитетов по 80 человек в каждом.

Докажите, что найдутся два комитета, имеющие не менее четырёх общих членов.

Положительные числа <i>х</i><sub>1</sub>, ..., <i>х<sub>k</sub></i> удовлетворяют неравенствам   <img align="absmiddle" src="/storage/problem-media/109199/problem_109199_img_2.gif">

  а) Докажите, что  <i>k</i> > 50.

  б) Построить пример таких чисел для какого-нибудь <i>k</i>.

  в) Найти минимальное <i>k</i>, для которого пример возможен.

Все имеющиеся на складе конфеты разных сортов разложены по <i>n</i> коробкам, на которые установлены цены в 1, 2, ..., <i>n</i>  у. е. соответственно. Требуется купить такие <i>k</i> из этих коробок наименьшей суммарной стоимости, которые содержат заведомо не менее <i><sup>k</sup>/<sub>n</sub></i> массы всех конфет. Известно, что масса конфет в каждой коробке не превосходит массы конфет в любой более дорогой коробке.

  а) Какие коробки следует купить при  <i>n</i> = 10  и  <i>k</i> = 3 ?

  б) Тот же вопрос для произвольных натуральных  <i>n ≥ k</i>.

В ботаническом справочнике каждое растение характеризуется 100 признаками (каждый признак либо присутствует, либо отсутствует). Растения считаются <i>непохожими</i>, если они различаются не менее, чем по 51 признаку.

  а) Покажите, что в справочнике не может находиться больше 50 попарно непохожих растений.

  б) А может ли быть ровно 50?

а) Доказать, что для любых положительных чисел  <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>k</sub></i>  (<i>k</i> > 3)  выполняется неравенство: <div align="center"><img src="/storage/problem-media/97781/problem_97781_img_2.gif"></div>б) Доказать, что это неравенство ни для какого  <i>k</i> > 3  нельзя усилить, то есть доказать, что для каждого фиксированного <i>k</i> нельзя заменить двойку в правой части на большее число так, чтобы полученное неравенство было справедливо для любого набора из <i>k</i> положительных чисел.

  а) <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>x</i><sub>3</sub>, <i>x</i><sub>4</sub>, <i>x</i><sub>5</sub> – положительные числа. Докажите, что квадрат суммы этих чисел не меньше учетверённой суммы произведений <i>x</i><sub>1</sub><i>x</i><sub>2</sub>, <i>x</i><sub>2</sub><i>x</i><sub>3</sub>, <i>x</i><sub>3</sub><i>x</i><sub>4</sub>, <i>x</i><sub>4</sub><i>x</i><sub>5</sub> и <i>x</i><sub>5</sub><i>x</i><sub>1</sub>.

  б) Пр...

Для любого треугольника можно вычислить сумму квадратов тангенсов половин его углов. Докажите, что эта сумма

  а) меньше 2 для любого остроугольного треугольника;

  б) не меньше 2 для любого тупоугольного треугольника, величина тупого угла которого больше или равна  2 arctg <sup>4</sup>/<sub>3</sub>;  а среди треугольников с тупым углом, меньшим  2 arctg <sup>4</sup>/<sub>3</sub>,  имеются и такие, сумма квадратов тангенсов половин углов которых больше 2, и такие, сумма квадратов тангенсов половин углов которых меньше 2.

а) Школьники одного класса в сентябре ходили в два туристических похода. В первом походе мальчиков было меньше &frac25; общего числа участников этого похода, во втором – тоже меньше &frac25;. Докажите, что в этом классе мальчики составляют меньше <sup>4</sup>/<sub>7</sub> общего числа учеников, если известно, что каждый из учеников участвовал по крайней мере в одном походе. б) Пусть в <i>k</i>-м походе, где  1 ≤ <i>k ≤ n</i>,  мальчики составляли α<sub><i>k</i></sub>-ю часть общего количества участников этого похода. Какую наибольшую долю могут составлять мальчики на общей встрече всех туристов (всех, кто участвовал хотя бы в одном из <i>n</i> походов)?

Сумма <i>n</i> положительных чисел  <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>x</i><sub>3</sub>, ..., <i>x<sub>n</sub></i>  равна 1.

Пусть <i>S</i> – наибольшее из чисел   <img align="middle" src="/storage/problem-media/73692/problem_73692_img_2.gif">

Найдите наименьшее возможное значение <i>S</i>. При каких значениях  <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x<sub>n</sub></i>  оно достигается?

Несколько человек в течение <i>t</i> минут наблюдали за улиткой. Каждый наблюдал за ней ровно 1 минуту и заметил, что за эту минуту улитка проползла ровно 1 метр. Ни в один момент времени улитка не оставалась без наблюдения. Какой наименьший и какой наибольший путь могла она проползти за эти <i>t</i> минут?

Даны две строго возрастающие последовательности положительных чисел, в которых каждый член, начиная с третьего, равен сумме двух предыдущих. Известно, что каждая последовательность содержит хотя бы одно число, которого нет в другой последовательности. Какое наибольшее количество общих чисел может быть у этих последовательностей? <b>Замечание к условию.</b>Предполагается, что обе последовательности бесконечны, иначе совпадений, очевидно, может быть сколько угодно (можно взять первые $n$ членов последовательности Фибоначчи 1, 2, 3, 5, 8, 13, ... как первую последовательность, и члены со второго по $(n+1)$-й — как вторую).

На доске выписаны в ряд <i>n</i> положительных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>. Вася хочет выписать под каждым числом <i>a<sub>i</sub></i> число  <i>b<sub>i</sub> ≥ a<sub>i</sub></i>  так, чтобы для каждых двух из чисел <i>b</i><sub>1</sub>, <i>b</i><sub>2</sub>, ..., <i>b<sub>n</sub></i> отношение одного из них к другому было целым. Докажите, что Вася может выписать требуемые числа так, чтобы выполнялось неравенство  <i>b</i><sub>1</sub><i>b</i><sub>2</sub>...<i>b<sub>n</...

В треугольнике <i>ABC  AL<sub>a</sub></i> и <i>AM<sub>a</sub></i> – внутренняя и внешняя биссектрисы угла <i>A</i>. Пусть ω<i><sub>a</sub></i> – окружность, симметричная описанной окружности Ω<i><sub>a</sub></i> треугольника <i>AL<sub>a</sub>M<sub>a</sub></i> относительно середины <i>BC</i>. Окружность ω<i><sub>b</sub></i> определена аналогично. Докажите, что ω<i><sub>a</sub></i> и ω<i><sub>b</sub></i> касаются тогда и только тогда, когда треугольник <i>ABC</i> прямоугольный.

Пусть <i>a, b</i> и <i>c</i> – длины сторон треугольника площади <i>S</i>; α<sub>1</sub>, β<sub>1</sub> и γ<sub>1</sub> – углы некоторого другого треугольника. Докажите, что

<i>a</i>² ctg α<sub>1</sub> + <i>b</i>² ctg β<sub>1</sub> + <i>c</i>² ctg γ<sub>1</sub> ≥ 4<i>S</i>,  причём равенство достигается, только когда рассматриваемые треугольники подобны.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка