Олимпиадные задачи по теме «Алгебра и арифметика» для 8-11 класса - сложность 3 с решениями
Алгебра и арифметика
Все категорииСуществуют ли 2013 таких различных натуральных чисел, что сумма каждых двух из них делится на их разность?
Лиса Алиса и кот Базилио вырастили на дереве 20 фальшивых купюр и теперь вписывают в них семизначные номера. На каждой купюре есть 7 пустых клеток для цифр. Базилио называет по одной цифре "1" или "2" (других он не знает), а Алиса вписывает названную цифру в любую свободную клетку любой купюры и показывает результат Базилио. Когда все клетки заполнены, Базилио берет себе как можно больше купюр с разными номерами (из нескольких с одинаковым номером он берет лишь одну), а остаток забирает Алиса. Какое наибольшее количество купюр может получить Базилио, как бы ни действовала Алиса?
Фигура <i>мамонт</i> бьёт как слон (по диагоналям), но только в трёх направлениях из четырёх (отсутствующее направление может быть разным для разных мамонтов). Какое наибольшее число не бьющих друг друга мамонтов можно расставить на шахматной доске 8×8?
Найдите все такие натуральные <i>k</i>, что при каждом нечётном <i>n</i> > 100 число 20<sup><i>n</i></sup> + 13<sup><i>n</i></sup> делится на <i>k</i>.
Даны три квадратных трёхчлена <i>P</i>(<i>x</i>), <i>Q</i>(<i>x</i>) и <i>R</i>(<i>x</i>) с положительными старшими коэффициентами, имеющие по два различных корня. Оказалось, что при подстановке корней трёхчлена <i>R</i>(<i>x</i>) в многочлен <i>P</i>(<i>x</i>) + <i>Q</i>(<i>x</i>) получаются равные значения. Аналогично при подстановке корней трёхчлена <i>P</i>(<i>x</i>) в многочлен <i>Q</i>(<i>x</i>) + <i>R</i>(<i>x</i>) получаются равные значения, а также при подстановке корней трёхчлена <i>Q</i>(<i>x</i>) в многочлен <i>P</i>(<i&g...
В клетках доски 8×8 расставлены числа 1 и –1 (в каждой клетке – по одному числу). Рассмотрим всевозможные расположения фигурки <img align="middle" src="/storage/problem-media/116938/problem_116938_img_2.gif"> на доске (фигурку можно поворачивать, но её клетки не должны выходить за пределы доски). Назовём такое расположение <i> неудачным</i>, если сумма чисел, стоящих в четырёх клетках фигурки, не равна 0. Найдите наименьшее возможное число неудачных расположений.
При каких <i>n</i> > 3 правильный <i>n</i>-угольник можно разрезать диагоналями (возможно, пересекающимися внутри него) на равные треугольники?
В футбольном чемпионате участвуют 18 команд. На сегодняшний день проведено 8 туров (в каждом туре все команды разбиваются на пары и в каждой паре команды играют друг с другом, причём пары не повторяются). Верно ли, что найдутся три команды, которые не сыграли ни одного матча между собой?
Чичиков играет с Ноздрёвым. Сначала Ноздрёв раскладывает 1001 орех по трём коробочкам. Посмотрев на раскладку, Чичиков называет любое целое число <i>N</i> от 1 до 1001. Далее Ноздрёв должен переложить, если надо, один или несколько орехов в пустую четвёртую коробочку и предъявить Чичикову одну или несколько коробочек, где в сумме ровно <i>N</i> орехов. В результате Чичиков получит столько мертвых душ, сколько орехов переложил Ноздрёв. Какое наибольшее число душ может гарантировать себе Чичиков, как бы ни играл Ноздрёв?
Дана бесконечная последовательность чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ... Известно, что для любого номера <i>k</i> можно указать такое натуральное число <i>t</i>, что
<i>a<sub>k</sub> = a<sub>k+t</sub> = a</i><sub><i>k</i>+2<i>t</i></sub> = ... Обязательно ли тогда эта последовательность периодическая, то есть существует ли такое натуральное <i>T</i>, что <i>a<sub>k</sub> = a<sub>k+T</sub></i> при любом натуральном <i>k</i>?
Машина ездит по кольцевой трассе по часовой стрелке. В полдень в две разных точки трассы встали два наблюдателя. К какому-то моменту машина проехала возле каждого наблюдателя не менее 30 раз. Первый наблюдатель заметил, что машина проезжала каждый следующий круг ровно на секунду быстрее, чем предыдущий. Второй заметил, что машина проезжала каждый следующий круг ровно на секунду медленнее, чем предыдущий. Докажите, что прошло не менее полутора часов.
В некоторых клетках квадрата 11×11 стоят плюсы, причём всего плюсов чётное количество. В каждом квадратике 2×2 тоже чётное число плюсов.
Докажите, что чётно и число плюсов в 11 клетках главной диагонали квадрата.
Чичиков играет с Ноздрёвым. Сначала Ноздрёв раскладывает 222 ореха по двум коробочкам. Посмотрев на раскладку, Чичиков называет любое целое число <i>N</i> от 1 до 222. Далее Ноздрёв должен переложить, если надо, один или несколько орехов в пустую третью коробочку и предъявить Чичикову одну или две коробочки, где в сумме ровно <i>N</i> орехов. В результате Чичиков получит столько мертвых душ, сколько орехов переложил Ноздрёв. Какое наибольшее число душ может гарантировать себе Чичиков, как бы ни играл Ноздрёв.
Пусть <i>C</i>(<i>n</i>) – количество различных простых делителей числа <i>n</i>.
а) Конечно или бесконечно число таких пар натуральных чисел (<i>a, b</i>), что <i>a ≠ b</i> и <i>C</i>(<i>a + b</i>) = <i>C</i>(<i>a</i>) + <i>C</i>(<i>b</i>)?
б) А если при этом дополнительно требуется, чтобы <i>C</i>(<i>a + b</i>) > 1000?
В классе 20 школьников. Было устроено несколько экскурсий, в каждой из которых участвовало хотя бы четверо школьников этого класса.
Докажите, что найдётся такая экскурсия, что каждый из участвовавших в ней школьников принял участие по меньшей мере в <sup>1</sup>/<sub>17</sub> всех экскурсий.
Докажите, что можно на каждом ребре произвольного тетраэдра записать по неотрицательному числу так, чтобы сумма чисел на сторонах каждой грани численно равнялась её площади.
Даны многочлен <i>P</i>(<i>x</i>) и такие числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, <i>b</i><sub>1</sub>, <i>b</i><sub>2</sub>, <i>b</i><sub>3</sub>, что <i>a</i><sub>1</sub><i>a</i><sub>2</sub><i>a</i><sub>3</sub> ≠ 0. Оказалось, что <i>P</i>(<i>a</i><sub>1</sub><i>x + b</i><sub>1</sub>) + <i>P</i>(<i>a</i><sub>2</sub><i>x + b</i><sub>2</sub>) = <i>P</i>(<i>a</i><sub>3<...
Клетчатая плоскость раскрашена в шахматном порядке в чёрный и белый цвета. Затем белые клетки снова раскрашены в красный и синий цвета так, чтобы клетки, соседние по углу, были разноцветными. Пусть <i>l</i> – прямая, не параллельная сторонам клеток. Для каждого отрезка <i>I</i>, параллельного <i>l</i>, посчитаем разность сумм длин его красных и синих участков. Докажите, что существует число <i>C</i> (зависящее только от прямой <i>l</i>) такое, что все полученные разности не превосходят <i>C</i>.
Существуют ли такие натуральные числа <i>a, b, c</i>, большие 10<sup>10</sup>, что их произведение делится на любое из них, увеличенное на 2012?
Каждые два из действительных чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, <i>a</i><sub>4</sub>, <i>a</i><sub>5</sub> отличаются не менее чем на 1. Оказалось, что для некоторого действительного <i>k</i> выполнены равенства <img align="absmiddle" src="/storage/problem-media/116765/problem_116765_img_2.gif"> Докажите, что <i>k</i>² ≥ <sup>25</sup>/<sub>3</sub>.
Пусть <i>a</i><sub>1</sub>, ..., <i>a</i><sub>10</sub> – различные натуральные числа, не меньшие 3, сумма которых равна 678. Может ли сумма остатков от деления некоторого натурального числа <i>n</i> на 20 чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub>10</sub>, 2<i>a</i><sub>1</sub>, 2<i>a</i><sub>2</sub>,..., 2<i>a</i><sub>10</sub> равняться 2012?
Изначально на доске записаны 10 последовательных натуральных чисел. За одну операцию разрешается выбрать любые два числа на доске (обозначим их <i>a</i> и <i>b</i>) и заменить их на числа <i>a</i>² – 2011<i>b</i>² и <i>ab</i>. После нескольких таких операций на доске не осталось ни одного из исходных чисел. Могли ли там опять оказаться 10 последовательных натуральных чисел (записанных в некотором порядке)?
Положительные действительные числа <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i> и <i>k</i> таковы, что <i>a</i><sub>1</sub> + ... + <i>a<sub>n</sub></i> = 3<i>k</i>, <img align="absmiddle" src="/storage/problem-media/116758/problem_116758_img_2.gif"> и <img align="absmiddle" src="/storage/problem-media/116758/problem_116758_img_3.gif"> .
Докажите, что какие-то два из чисел <i>a</i><sub>1</sub>, ..., <i>a<sub>n</sub></i> отличаются больше чем на 1.
Внутри каждой грани единичного куба выбрали по точке. Затем каждые две точки, лежащие на соседних гранях, соединили отрезком.
Докажите, что сумма длин этих отрезков не меньше, чем <img align="absmiddle" src="/storage/problem-media/116727/problem_116727_img_2.gif"> .
Докажите, что для любого натурального <i>n</i> существуют такие целые числа <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a<sub>n</sub></i>, что при всех целых <i>x</i> число
(...((<i>x</i>² + <i>a</i><sub>1</sub>)² + <i>a</i><sub>2</sub>)² + ... + <i>a</i><sub><i>n</i>–1</sub>)² + <i>a<sub>n</sub></i> делится на 2<i>n</i> – 1.