Олимпиадные задачи по теме «Математическая логика» для 5 класса - сложность 2-3 с решениями

Карлсон открыл школу, и 1 сентября во всех трёх первых классах было по три урока: Курощение, Низведение и Дуракаваляние. Один и тот же предмет в двух классах одновременно идти не может. Курощение в 1Б было первым уроком. Учитель Дуракаваляния похвалил учеников 1Б: "У вас получается еще лучше, чем у 1А". Низведение на втором уроке было не в 1А. В каком классе валяли дурака на последнем уроке?

В семье весёлых гномов папа, мама и ребёнок. Имена членов семьи: Саша, Женя и Валя. За обеденным столом два гнома сделали по два заявления.

  Валя: "Женя и Саша разного пола. Женя и Саша – мои родители".

  Саша: "Я – отец Вали. Я – дочь Жени".

Восстановите имя и отчество гнома-ребёнка, если известно, что каждый гном один раз сказал правду, и один раз пошутил.

Некоторые жители <i>Острова Разноцветных Лягушек</i> говорят только правду, а остальные всегда лгут. Трое островитян сказали так:

  Бре: На нашем острове нет синих лягушек.

  Ке: Бре лгун. Он же сам синяя лягушка!

  Кекс: Конечно, Бре лгун. Но он красная лягушка.

Водятся ли на этом острове синие лягушки?

Решите ребус:  ЛЕТО + ЛЕС = 2011.

13 детей сели за круглый стол и договорились, что мальчики будут врать девочкам, а друг другу говорить правду, а девочки, наоборот, будут врать мальчикам, а друг другу говорить правду. Один из детей сказал своему правому соседу: "Большинство из нас мальчики". Тот сказал своему правому соседу: "Большинство из нас девочки", а он своему соседу справа: "Большинство из нас мальчики", а тот своему: "Большинство из нас девочки" и так далее, пока последний ребёнок не сказал первому: "Большинство из нас мальчики". Сколько мальчиков было за столом?

Вот ребус довольно простой:

ЭХ вчетверо больше, чем ОЙ.

АЙ вчетверо больше, чем ОХ.

Найди сумму всех четырёх.

На полянке собрались божьи коровки. Если у божьей коровки на спине шесть точек, то она всегда говорит правду, а если четыре точки – то она всегда лжёт, а других божьих коровок на полянке не было. Первая божья коровка сказала: "У каждой из нас одинаковое количество точек на спине". Вторая сказала: "У всех вместе на спинах 30 точек". – "Нет, у всех вместе 26 точек на спинах", – возразила третья. "Из этих троих ровно одна сказала правду", – заявила каждая из остальных божьих коровок. Сколько всего божьих коровок собралось на полянке?

Четверо детей сказали друг о друге так.

<i>Маша</i>:  Задачу решили трое: Саша, Наташа и Гриша.

<i>Саша</i>:  Задачу не решили трое: Маша, Наташа и Гриша.

<i>Наташа</i>:  Маша и Саша солгали.

<i>Гриша</i>:  Маша, Саша и Наташа сказали правду.

Сколько детей на самом деле сказали правду?

На острове рыцарей и лжецов путешественник пришёл в гости к своему знакомому рыцарю и увидел его за круглым столом с пятью гостями.

– Интересно, а сколько среди вас рыцарей? – спросил он.

– А ты задай каждому какой-нибудь вопрос и узнай сам, – посоветовал один из гостей.

– Хорошо. Скажи мне каждый: кто твои соседи? – спросил путешественник.

На этот вопрос все ответили одинаково.

– Данных недостаточно! – сказал путешественник.

– Но сегодня день моего рождения, не забывай об этом, – сказал один из гостей.

– Да, сегодня день его рождения! – сказал его сосед.

И путешественник смог узнать, сколько за столом рыцарей. Действительно, сколько же их?

В равенстве  ТИХО + ТИГР = СПИТ  замените одинаковые буквы одинаковыми цифрами, а разные буквы – разными цифрами так, чтобы ТИГР был бы как можно меньше (нулей среди цифр нет).

Из четырёх цифр, отличных от нуля, составлены два четырёхзначных числа: самое большое и самое маленькое из возможных. Сумма получившихся чисел оказалась равна 11990. Какие числа могли быть составлены?

Какие цифры могут стоять на месте букв в примере  <i>AB·C = DE</i>,  если различными буквами обозначены различные цифры и слева направо цифры записаны в порядке возрастания?

Каждый из четырех инопланетян умеет писать только две буквы. Кра умеет писать<i> <img src="/storage/problem-media/111233/problem_111233_img_2.gif"> </i>и<i> Δ </i>; Кре – буквы<i> <img src="/storage/problem-media/111233/problem_111233_img_3.gif"> </i>и<i> <img src="/storage/problem-media/111233/problem_111233_img_2.gif"> </i>; Кру – буквы<i> <img src="/storage/problem-media/111233/problem_111233_img_3.gif"> </i>и<i> <img src="/storage/problem-media/111233/problem_111233_img_4.gif"> </i>, Крю – буквы<i> Δ </i>и<i> <img src="/storage/problem-media/111233/problem_111233_img_4.gif"> </i>. Они оставили...

Из спичек составлены три неверных равенства (см. рисунок). <div align="center"><img src="/storage/problem-media/88248/problem_88248_img_2.gif"></div>Переставьте в каждом ряду по одной спичке так, чтобы все равенства стали верными. Можно смещать части формулы без изменения рисунка.

Женю, Лёву и Гришу рассадили так, что Женя мог видеть Лёву и Гришу, Лёва  — только Гришу, а Гриша  — никого. Потом из мешка, в котором лежали две белые и три чёрные шапки (содержимое мешка было известно мальчикам), достали и надели на каждого шапку неизвестного ему цвета, а две шапки остались в мешке.

Женя сказал, что он не может определить цвет своей шапки. Лёва слышал ответ Жени и сказал, что и у него не хватает данных для определения цвета своей шапки. Мог ли Гриша на основании этих ответов определить цвет своей шапки?

Ваня и Вася  — братья-близнецы. Один из них всегда говорит правду, а другой всегда лжёт. Вы можете задать только один вопрос одному из братьев, на который он ответит "да" или "нет". Попробуйте выяснить, как зовут каждого из близнецов.

Расшифруйте ребус <div align="center"><img src="/storage/problem-media/88017/problem_88017_img_2.gif"></div>

Расшифруйте ребус: замените звёздочки цифрами так, чтобы выполнялись равенства во всех строках и каждое число последней строки равнялось сумме чисел столбца, под которым оно расположено.<div align="center"><img src="/storage/problem-media/88016/problem_88016_img_2.gif"></div>

В ребусе, изображённом на рисунке, действия в каждой строке производятся подряд слева направо, хотя скобки не расставлены. Каждое число последней строки равняется сумме чисел столбца, под которым оно расположено. Результат каждой строки равен сумме чисел столбца с тем же номером. Ни одно число в ребусе не равно нулю и не начинается нулём, однако на нуль числа могут оканчиваться. Расшифруйте ребус. <div align="center"><img src="/storage/problem-media/88010/problem_88010_img_2.gif"></div>

Замените каждую букву на схеме цифрой от 1 до 9 так, чтобы выполнялись все неравенства, а затем расставьте буквы в порядке возрастания их числовых значений. Какое слово у вас получилось? <div align="center"><img src="/storage/problem-media/87968/problem_87968_img_2.gif"></div>

Друг за другом стоят шесть стульев, между каждыми двумя соседними стульями на полу лежит по одному подарку (см. рисунок).<img width="400" src="/storage/problem-media/67469/problem_67469_img_2.png">На четырёх стульях сидят Аня, Оля, Коля и Боря, все смотрят в одном направлении. Они сказали следующее: Аня: «Впереди меня подарков больше, чем позади.» Оля: «Позади меня подарков больше, чем впереди.» Коля: «Между Олей и Борей столько же подарков, сколько между мной и Аней.» Боря: «Можно убрать один из подарков впереди меня так, что все наши утверждения станут неверны.»

Известно, что все дети сказали правду. Кто на каком стуле сидит?

Собрались на состязанье йог, бульдог и носорог. Один из них ловчее всех и всегда лжёт, другой — смелее всех и всегда говорит правду, третий — быстрее всех, может говорить и ложь, и правду. Они сделали три заявления. <i>Йог:</i>Самый быстрый смелее меня. <i>Бульдог:</i>Я быстрее самого ловкого. <i>Носорог:</i>Я ловчее самого смелого. Кто из них самый медленный?

В ребусе ЯЕМЗМЕЯ = 2020 замените каждую букву в левой части равенства цифрой или знаком арифметического действия (одинаковые буквы одинаково, разные – по-разному) так, чтобы получилось верное равенство. Достаточно привести один пример, пояснений не требуется.

За большим круглым столом сидят 60 человек, каждый из которых – рыцарь или лжец. Каждый из них произнес фразу: “Из пяти человек, сидящих подряд справа от меня, хотя бы двое – лжецы”. Сколько рыцарей может сидеть за этим столом?

Найдите какое-нибудь решение ребуса: ГОД + ФИФА = 2018. (Одинаковыми буквами обозначены одинаковые цифры, разными буквами – разные цифры. Достаточно привести ответ.)

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка