Олимпиадные задачи по теме «Принцип крайнего» для 11 класса - сложность 1-2 с решениями

В десятичной записи некоторого числа цифры расположены слева направо в порядке убывания. Может ли это число быть кратным числу 111?

Грани выпуклого многогранника – подобные треугольники.

Докажите, что многогранник имеет две пары равных граней (одну пару равных граней и еще одну пару равных граней).

Два пирата делили добычу, состоящую из пяти золотых слитков, масса одного из которых 1 кг, а другого – 2 кг. Какую массу могли иметь три других слитка, если известно, что какие бы два слитка ни выбрал себе первый пират, второй пират сможет так разделить оставшиеся слитки, чтобы каждому из них досталось золота поровну?

Существуют ли 19 таких попарно различных натуральных чисел с одинаковой суммой цифр, что их сумма равна 1999?

Имеется 19 гирек весов 1, 2, 3, ..., 19 г: девять железных, девять бронзовых и одна золотая. Известно, что общий вес всех железных гирек на 90 г больше общего веса бронзовых. Найдите вес золотой гирьки.

Найдите геометрическое место точек, лежащих внутри куба и равноудалённых от трёх скрещивающихся рёбер  <i>a, b, c</i>  этого куба.

Найти все положительные решения системы уравнений

    <img width="20" height="111" align="MIDDLE" border="0" src="/storage/problem-media/79311/problem_79311_img_2.gif"><img width="137" height="111" align="MIDDLE" border="0" src="/storage/problem-media/79311/problem_79311_img_3.gif">

Доказать, что у всякого выпуклого многогранника найдутся две грани с одинаковым числом сторон.

Можно ли расположить на плоскости 1968 отрезков так, чтобы каждый из них обоими концами упирался строго внутрь других отрезков?

Имеется лабиринт, состоящий из<i>n</i>окружностей, касающихся прямой<i>AB</i>в точке<i>M</i>. Все окружности расположены по одну сторону от прямой, а их длины составляют геометрическую прогрессию со знаменателем 2. Два человека в разное время начали ходить по этому лабиринту. Их скорости одинаковы, а направления движения различны. Каждый из них проходит все окружности по порядку, и, пройдя наибольшую, снова идет в меньшую. Доказать, что они встретятся.

Доказать, что не существует попарно различных натуральных чисел <i>x, y, z, t</i>, для которых было бы справедливо соотношение  <i>x<sup>x</sup> + y<sup>y</sup> = z<sup>z</sup> + t<sup>t</sup></i>.

Из любых шести точек на плоскости (из которых никакие три не лежат на одной прямой) можно так выбрать три, что треугольник с вершинами в этих точках имеет хотя бы один угол, не больший30<sup><tt>o</tt></sup>. Доказать.

Известно, что<i>Z</i><sub>1</sub>+ ... +<i>Z</i><sub>n</sub>= 0, где<i>Z</i><sub>k</sub>— комплексные числа. Доказать, что среди этих чисел найдутся два таких, что разность их аргументов больше или равна120<sup><tt>o</tt></sup>.

Существует ли тетраэдр, каждое ребро которого являлось бы стороной плоского тупого угла?

Доказать, что не существует тетраэдра, в котором каждое ребро являлось бы стороной плоского тупого угла.

Пусть <i>k</i> и <i>n</i> – натуральные числа,  <i>k ≤ n</i>.  Расставьте первые <i>n</i>² натуральных чисел в таблицу <i>n</i>×<i>n</i> так, чтобы в каждой строке числа шли в порядке возрастания и при этом сумма чисел в <i>k</i>-м столбце была  а) наименьшей;  б) наибольшей.

Кусок сыра массой 1 кг разрезали на $n\geqslant 4$ кусков массами меньше 600 г. Оказалось, что их нельзя разбить на две кучки так, чтобы масса каждой кучки была не меньше 400 г, но не больше 600 г (кучка может состоять из одного или нескольких кусков). Докажите, что найдутся три таких куска, что суммарная масса любых двух из них больше 600 г.

Плоскость разбита на части несколькими прямыми, среди которых есть непараллельные. Те части, граница которых состоит из двух лучей, закрасили. После этого проведена ещё одна прямая. Докажите, что, независимо от положения новой прямой, по обе стороны от неё найдутся закрашенные точки.<img src="/storage/problem-media/67302/problem_67302_img_2.png">Пример расположения прямых (без последней прямой) изображен на рисунке.

Сто положительных чисел записаны по кругу. Квадрат каждого числа равен сумме двух чисел, стоящих за этим числом по часовой стрелке.

Какие числа могут быть записаны?

Вася разобрал каркас треугольной пирамиды в кабинете математики и хочет из её шести рёбер составить два треугольника так, чтобы каждое ребро являлось стороной ровно одного треугольника. Всегда ли Вася сможет это сделать?

Пусть <i>n</i> – натуральное число. На  2<i>n</i> + 1  карточках написано по ненулевому целому числу; сумма всех чисел также ненулевая. Требуется этими карточками заменить звёздочки в выражении  *<i>x</i><sup>2<i>n</i></sup> + *<i>x</i><sup>2<i>n</i>–1</sup> + ... *<i>x</i> + *  так, чтобы полученный многочлен не имел <i>целых</i> корней. Всегда ли это можно сделать?

Сумма девяти различных натуральных чисел равна 200. Всегда ли можно выбрать из них четыре числа так, чтобы их сумма была больше чем 100?

В первой четверти у Васи было пять оценок по математике, больше всего среди них пятёрок. При этом оказалось, что медиана всех оценок равна 4, а среднее арифметическое 3,8. Какие оценки могли быть у Васи?

На каждой из четырёх карточек написано натуральное число. Берут наугад две карточки и складывают числа на них. С равной вероятностью эта сумма может быть меньше 9, равна 9 и больше 9. Какие числа могут быть записаны на карточках?

Среднее арифметическое десяти различных натуральных чисел равно 15. Найдите наибольшее значение наибольшего из этих чисел.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка