Олимпиадные задачи из источника «Рамблер-Наука - задача дня (www.nature.ru)» для 11 класса - сложность 3-5 с решениями

В классе каждый болтун дружит хотя бы с одним молчуном. При этом болтун молчит, если в кабинете находится нечетное число его друзей – молчунов. Докажите, что учитель может пригласить на факультатив не менее половины класса так, чтобы все болтуны молчали.

На табло горят несколько лампочек. Имеется несколько кнопок. Нажатие на кнопку меняет состояние лампочек, с которыми она соединена. Известно, что для любого набора лампочек найдется кнопка, соединенная с нечетным числом лампочек из этого набора. Докажите, что, нажимая на кнопки, можно погасить все лампочки.

По прямой в одном направлении на некотором расстоянии друг от друга движутся пять одинаковых шариков, а навстречу им движутся пять других таких же шариков. Скорости всех шариков одинаковы. При столкновении любых двух шариков они разлетаются в противоположные стороны с той же скоростью, с какой двигались до столкновения. Сколько всего столкновений произойдёт между шариками?

В шахматном турнире каждый участник сыграл с каждым из остальных одну партию.

Доказать, что участников можно так занумеровать, что окажется, что ни один участник не проиграл непосредственно за ним следующему.

В автобусе <i>n</i> мест, и все билеты проданы <i>n</i> пассажирам. Первым в автобус заходит Рассеянный Учёный и, не посмотрев на билет, занимает первое попавшееся место. Далее пассажиры входят по одному. Если вошедший видит, что его место свободно, он занимает свое место. Если же место занято, то вошедший занимает первое попавшееся свободное место. Найдите вероятность того, что пассажир, вошедший последним, займет место согласно своему билету?

Докажите, что многочлен  <i>x</i><sup>44</sup> + <i>x</i><sup>33</sup> + <i>x</i><sup>22</sup> + <i>x</i><sup>11</sup> + 1  делится на   <i>x</i><sup>4</sup> + <i>x</i><sup>3</sup> + <i>x</i><sup>2</sup> + <i>x</i> + 1.

Архитектор хочет расположить семь высотных зданий так, чтобы, гуляя по городу, можно было увидеть их шпили в любом (циклическом) порядке.

Удастся ли это ему?

Внутри круглого блина радиуса 10 запекли монету радиуса 1. Каким наименьшим числом прямолинейных разрезов можно наверняка задеть монету?

Существует ли непрерывная функция, принимающая каждое действительное значение ровно 3 раза?

Укажите такое шестизначное число <i>N</i>, состоящее из различных цифр, что числа 2<i>N</i>, 3<i>N</i>, 4<i>N</i>, 5<i>N</i>, 6<i>N</i> отличаются от него перестановкой цифр.

Докажите, что в пространстве найдётся гладкая кривая, которая пересекается с каждой плоскостью.

Положительные иррациональные числа a и b таковы, что 1/a+1/b=1. Докажите, что среди чисел [ma], [nb] каждое натуральное число встречается ровно один раз.

На бесконечной шахматной доске через каждые три клетки по горизонтали и по вертикали стоит фишка. Можно ли обойти конем оставшуюся часть доски, побывав при этом на каждом поле ровно один раз?

Докажите, что рациональные числа из отрезка [0;1] можно покрыть системой интервалов суммарной длины не больше 1/1000.

Двое играют в следующую игру. Ходят по очереди. Один называет два числа, являющихся концами отрезка. Следующий должен назвать два других числа, являющихся концами отрезка, вложенного в предыдущий. Игра продолжается бесконечно долго. Первый стремится, чтобы в пересечении всех названных отрезков было хотя бы одно рациональное число, а второй стремится ему помешать. Кто выигрывает?

Вычислите$\int_0^{\pi /2}(\sin ^2 (\sin x)+ \cos^2(\cos x)) dx$.

За дядькой Черномором выстроились чередой бесконечное число богатырей разного роста. Докажите, что он может приказать части из них выйти из строя так, чтобы в строю осталось бесконечное число богатырей и все они стояли по росту (в порядке возрастания или убывания).

Докажите, что внутри выпуклого многоугольника можно поместить его образ при гомотетии с коэффициентом – ½.

Дана выпуклая фигура и точка A внутри нее. Докажите, что найдется хорда (т.е. отрезок, соединяющий две граничные точки выпуклой фигуры), проходящая через точку A и делящаяся точкой A пополам.

Пусть f - непрерывная функция, определенная на отрезке [0;1] такая, что f(0)=f(1)=0. Докажите, что на отрезке [0;1] найдутся 2 точки на расстоянии 0,1, в которых функция f(x) принимает равные значения.

На прямоугольном столе лежат равные картонные квадраты k различных цветов со сторонами, параллельными сторонам стола. Если рассмотреть любые k квадратов различных цветов, то какие-нибудь два из них можно прибить к столу одним гвоздем. Докажите, что все квадраты некоторого цвета можно прибить к столу 2k-2 гвоздями.

Найдите количество перестановок a<sub>1</sub>, a<sub>2</sub>, ... , a<sub>10</sub>чисел 1,2,...,10, таких, что a<sub>i+1</sub>не меньше, чем a<sub>i</sub>-1 (для i=1,2,...,9).

Решите уравнение$2x^x=\sqrt{2}$в положительных числах.

Несколько отрезков покрывают отрезок  [0, 1].

Докажите, что среди них можно выбрать несколько непересекающихся отрезков, сумма длин которых не меньше ½.

В хоккейном турнире принимают участие <i>n</i> команд. Каждая команда встречается с каждой по одному разу, при этом выигравшей команде присуждается 2 очка, сыгравшей вничью – 1, проигравшей – 0 очков. Какой максимальный разрыв в очках может быть между командами, занявшими соседние места?

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка