Олимпиадные задачи из источника «глава 11. Последовательности и ряды» для 1-9 класса - сложность 3-4 с решениями

Докажите, что   <img align="absmiddle" src="/storage/problem-media/61528/problem_61528_img_2.gif">

Числа <i>P<sub>kl</sub></i>(<i>n</i>) определены в задаче <a href="https://mirolimp.ru/tasks/161525">161525</a>.

Пусть   <img align="absmiddle" src="/storage/problem-media/61519/problem_61519_img_2.gif">   – производящая функция последовательности <i>чисел Каталана</i>. Докажите, что она удовлетворяет равенству <div align="CENTER"><i>C</i>(<i>x</i>) = <i>xC</i>²(<i>x</i>) + 1, </div>и получите явный вид функции<i>C</i>(<i>x</i>). Определение чисел Каталана можно найти в<a href="https://problems.ru/thes.php?letter=23#chisla_catalana">справочнике</a>.

Переменные<i>x</i>и<i>y</i>связаны равенством<div align="CENTER"> <i>x</i> = <i>y</i> + $\displaystyle {\frac{y^2}{2!}}$ + $\displaystyle {\frac{y^3}{3!}}$ +...+ $\displaystyle {\frac{y^n}{n!}}$ +... </div>Разложите<i>y</i>по степеням<i>x</i>.

Придумайте какое-либо взаимно-однозначное соответствие между разбиениями натурального числа на различные и на нечётные слагаемые.

На доске написано <i>n</i> натуральных чисел. Пусть <i>a<sub>k</sub></i> – количество тех из них, которые больше <i>k</i>. Исходные числа стерли и вместо них написали все положительные <i>a<sub>k</sub></i>. Докажите, что если с новыми числами сделать то же самое, то на доске окажется исходный набор чисел.

Например, для чисел 5, 3, 3, 2, получается следующая цепочка   (5, 3, 3, 2)  →  (4, 4, 3, 1, 1)  →  (5, 3, 3, 2).

Вычислите, используя производящие функции, следующие суммы:

а)   <img align="absmiddle" src="/storage/problem-media/61508/problem_61508_img_2.gif">    б)   <img align="absmiddle" src="/storage/problem-media/61508/problem_61508_img_3.gif">    в)   <img align="absmiddle" src="/storage/problem-media/61508/problem_61508_img_4.gif">    г)   <img align="absmiddle" src="/storage/problem-media/61508/problem_61508_img_5.gif">

Вычислите суммы а)$\sum\limits_{n=0}^{\infty}$${\dfrac{F_n}{2^n}}$;        б)$\sum\limits_{n=0}^{\infty}$${\dfrac{L_n}{2^n}}$. Здесь L<sub>n</sub>обозначает числа Люка, смотри задачу<a href="https://mirolimp.ru/tasks/160585">3.133</a>.

а) Найдите производящую функцию последовательности чисел Люка (определение чисел Люка смотри в задаче <a href="https://mirolimp.ru/tasks/160585">160585</a>)б) Пользуясь этой функцией, выразите <i>L<sub>n</sub></i> через φ и <img width="15" height="30" align="MIDDLE" border="0" src="/storage/problem-media/61504/problem_61504_img_2.gif"> (см. задачу <a href="https://mirolimp.ru/tasks/161502">161502</a>).

Докажите, что бесконечная сумма<div align="CENTER"> <table> <tr valign="MIDDLE"><td align="RIGHT"> </td> <td align="LEFT">0, 1</td> </tr> <tr valign="MIDDLE"><td align="RIGHT">+</td> <td align="LEFT">0, 01</td> </tr> <tr valign="MIDDLE"><td align="RIGHT">+</td> <td align="LEFT">0, 002</td> </tr> <tr valign="MIDDLE"><td align="RIGHT">+</td> <td align="LEFT">0, 0003</td> </tr> <tr valign="MIDDLE"><td align="RIGHT">+</td> <td align="LEFT">0, 00005</td>...

а) Докажите, что производящая функция последовательности чисел Фибоначчи   <i>F</i>(<i>x</i>) = <i>F</i><sub>0</sub> + <i>F</i><sub>1</sub><i>x</i> + <i>F</i><sub>2</sub><i>x</i>² + ... + <i>F<sub>n</sub>x<sup>n</sup></i> + ... может быть записана в виде   <img align="absmiddle" src="/storage/problem-media/61502/problem_61502_img_2.gif">   где  <img width="15" height="28" align="MIDDLE" border="0" src="/storage/problem-media/61502/problem_61502_img_3.gif"> = <img width="41" height="41" align="MIDDLE" border="0" s...

Функции <i>a, b</i> и <i>c</i> заданы рядами     <img align="absmiddle" src="/storage/problem-media/61501/problem_61501_img_2.gif">     <img align="absmiddle" src="/storage/problem-media/61501/problem_61501_img_3.gif">     <img align="absmiddle" src="/storage/problem-media/61501/problem_61501_img_4.gif">Докажите, что  <i>a</i>³ +<i>b</i>³ +<i>c</i>³ – 3<i>abc</i>= (1 +<i>x</i>³)<sup><i>n</i></sup>.

Предположим, что у нас имеется 1000000 автобусных билетов с номерами от 000000 до 999999. Будем называть билет <i>счастливым</i>, если сумма первых трёх цифр его номера равна сумме трёх последних. Пусть <i>N</i> – количество счастливых билетов. Докажите равенства:

  а)  (1 + <i>x</i> + ... + <i>x</i><sup>9</sup>)<sup>3</sup>(1 + <i>x</i><sup>–1</sup> + ... + <i>x</i><sup>–9</sup>)<sup>3</sup> = <i>x</i><sup>27</sup> + ... + <i>a</i><sub>1</sub><i>x</i> + <i>N</i> + <i>a</i><sub>1</sub><i>x</i> + ... + <i>x</i><sup>–27</sup>;...

Докажите, что для всех неотрицательных <i>n</i> выполняются равенства   а)   <img align="absmiddle" src="/storage/problem-media/61496/problem_61496_img_2.gif">   б)   <img align="absmiddle" src="/storage/problem-media/61496/problem_61496_img_3.gif">

Пусть <i>a<sub>n</sub></i> – число решений уравнения  <i>x</i><sub>1</sub> + ... + <i>x<sub>k</sub></i> = <i>n</i>   в целых неотрицательных числах и <i>F</i>(<i>x</i>) – производящая функция последовательности <i>a<sub>n</sub></i>.

  а) Докажите равенства:  <i>F</i>(<i>x</i>) = (1 + <i>x</i> + <i>x</i>² + ...)<sup><i>k</i></sup> = (1 – <i>x</i>)<sup>–<i>k</i></sup>.

  б) Найдите формулу для <i>a<sub>n</sub></i>, пользуясь задачей <a href="https://mirolimp.ru/tasks/161490">161490</a>.

Каким линейным рекуррентным соотношениям удовлетворяют последовательности a) <i>a</i><sub>n</sub>=<i>n</i><sup>2</sup>;        б) <i>a</i><sub>n</sub>=<i>n</i><sup>3</sup>?

Найдите формулу<i>n</i>-го члена для последовательностей, заданных условиями (<i>n</i>$\geqslant$0): <table> <tr><td align="LEFT">a) <i>a</i><sub>0</sub> = 0, <i>a</i><sub>1</sub> = 1, <i>a</i><sub>n + 2</sub> = 4<i>a</i><sub>n + 1</sub> - 5<i>a</i><sub>n</sub>;</td> </tr> <tr><td align="LEFT"> б) <i>a</i><sub>0</sub> = 1, <i>a</i><sub>1</sub> = 2, <i>a</i><sub>n + 2</sub> = 2<i>a</i><sub>n + 1</sub> - 2<i>a</i><sub>n</sub>;</td> </tr> <tr><td align...

Пять моряков высадились на остров и к вечеру набрали кучу кокосовых орехов. Дележ отложили на утро. Один из них, проснувшись ночью, угостил одним орехом мартышку, а из остальных орехов взял себе точно пятую часть, после чего лёг спать и быстро уснул. За ночь так же поступили один за другим и остальные моряки; при этом каждый не знал о действиях предшественников. На утро они поделили оставшиеся орехи поровну, но для мартышки в этот раз лишнего ореха не осталось. Каким могло быть наименьшее число орехов в собранной куче?

Определим последовательности {<i>x</i><sub>n</sub>} и {<i>y</i><sub>n</sub>} при помощи условий:<div align="CENTER"> <i>x</i><sub>n</sub> = <i>x</i><sub>n - 1</sub> + 2<i>y</i><sub>n - 1</sub>sin<sup>2</sup>$\displaystyle \alpha$,    <i>y</i><sub>n</sub> = <i>y</i><sub>n - 1</sub> + 2<i>x</i><sub>n - 1</sub>cos<sup>2</sup>$\displaystyle \alpha$;    <i>x</i><sub>0</sub> = 0, <i>y</i><sub>0</sub> = cos$\displaystyle \alpha$. </div>Найдите выражение для<i>x</i><sub>n</sub>и<i>y</...

Садовник, привив черенок редкого растения, оставляет его расти два года, а затем ежегодно берет от него по 6 черенков. С каждым новым черенком он поступает аналогично. Сколько будет растений и черенков на<i>n</i>-ом году роста первоначального растения?

Найдите формулу<i>n</i>-го члена для последовательностей, заданных условиями (<i>n</i>$\geqslant$0): <table> <tr><td align="LEFT">a) <i>a</i><sub>0</sub> = 0, <i>a</i><sub>1</sub> = 1, <i>a</i><sub>n + 2</sub> = 5<i>a</i><sub>n + 1</sub> - 6<i>a</i><sub>n</sub>;</td> </tr> <tr><td align="LEFT"> б) <i>a</i><sub>0</sub> = 1, <i>a</i><sub>1</sub> = 1, <i>a</i><sub>n + 2</sub> = 3<i>a</i><sub>n + 1</sub> - 2<i>a</i><sub>n</sub>;</td> </tr> <tr><td align...

<b>Дискретная теорема Лиувилля.</b>Пусть<i>f</i>(<i>x</i>,<i>y</i>) — ограниченная гармоническая (определение смотри в задаче<a href="https://mirolimp.ru/tasks/161455">11.28</a>) функция, то есть существует положительная константа<i>M</i>такая, что<div align="CENTER"> $\displaystyle \forall$(<i>x</i>, <i>y</i>) $\displaystyle \in$ $\displaystyle \mathbb {Z}$<sup>2</sup>    | <i>f</i> (<i>x</i>, <i>y</i>)| $\displaystyle \leqslant$ <i>M</i>. </div>Докажите, что функция<i>f</i>(<i>x</i>,<i>y</i>) равна константе.

Для каких натуральных<i>n</i>в выражении<div align="CENTER"> ±1<sup>2</sup>±2<sup>2</sup>±3<sup>2</sup>±...±<i>n</i><sup>2</sup> </div>можно так расставить знаки + и -, что в результате получится 0?

Докажите, что при всех натуральных <i>n</i> число   <i>f</i> (<i>n</i>) = 2<sup>2<i>n</i>–1</sup> – 9<i>n</i>² + 21<i>n</i> – 14   делится на 27.

  а) Пусть <i>q</i> – натуральное число и функция   <i>f</i>(<i>x</i>) = <i>cq<sup>x</sup></i> + <i>a<sub>n</sub>x<sup>n</sup></i> + ... + <i>a</i><sub>1</sub><i>x</i> + <i>a</i><sub>0</sub>  принимает целые значения при  <i>x</i> = 0, 1, 2, ..., <i>n</i> + 1.

Докажите, что при любом натуральном <i>x</i> число  <i>f</i>(<i>x</i>) также будет целым.

  б) Пусть выполняются условия пункта а) и  <i>f</i>(<i>x</i>) делится на некоторое целое  <i>m</i> ≥ 1  при  <i>x</i> = 0, 1, 2, ..., <i>n</i> + 1.  Докажите, что  &l...

При помощи преобразования Абеля вычислите следующие суммы: а)$\sum\limits_{k=1}^{n}$<i>k</i><sup>2</sup><i>q</i><sup>k - 1</sup>; б)$\sum\limits_{k=1}^{n}$<i>k</i>sin <i>kx</i>; в)$\sum\limits_{k=1}^{n}$<i>k</i><sup>2</sup>cos <i>kx</i>.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка