Олимпиадные задачи из источника «глава 9. Уравнения и системы» для 11 класса - сложность 2 с решениями

Дано 100 чисел <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>, ..., <i>a</i><sub>100</sub>, удовлетворяющих условиям:

  <i>a</i><sub>1</sub> – 4<i>a</i><sub>2</sub> + 3<i>a</i><sub>3</sub> ≥ 0,

  <i>a</i><sub>2</sub> – 4<i>a</i><sub>3</sub> + 3<i>a</i><sub>4</sub> ≥ 0,

  <i>a</i><sub>3</sub> – 4<i>a</i><sub>4</sub> + 3<i>a</i><sub>5</sub> ≥ 0,

    ...,

  <i>a</i><sub>99</sub> – 4<i>a</i><sub>100</sub> +...

Может ли система линейных уравнений с действительными коэффициентами иметь в точности два различных решения?

Решите системы уравнений. Для каждой из них выясните, при каких значениях параметров система не имеет решений, а при каких имеет бесконечно много решений. а) <img width="18" height="54" align="MIDDLE" border="0" src="/storage/problem-media/61344/problem_61344_img_2.gif"><img width="130" height="54" align="MIDDLE" border="0" src="/storage/problem-media/61344/problem_61344_img_3.gif">б) <img width="18" height="54" align="MIDDLE" border="0" src="/storage/problem-media/61344/problem_61344_img_2.gif"><img width="138" height="54" align="MIDDLE" border="0" src="/storage/problem-media/...

Решите системы а) <img width="20" height="92" align="MIDDLE" border="0" src="/storage/problem-media/61341/problem_61341_img_2.gif"><img width="190" height="92" align="MIDDLE" border="0" src="/storage/problem-media/61341/problem_61341_img_3.gif">б) <img width="20" height="92" align="MIDDLE" border="0" src="/storage/problem-media/61341/problem_61341_img_4.gif"><img width="203" height="92" align="MIDDLE" border="0" src="/storage/problem-media/61341/problem_61341_img_5.gif"> в) <img width="20" height="92" align="MIDDLE" border="0"...

Рассмотрим окружность радиуса 1. Опишем около нее и впишем в нее правильные <i>n</i>-угольники. Обозначим их периметры через <i>P<sub>n</sub></i> (для описанного) и <i>p<sub>n</sub></i> (для вписанного).

   а) Найдите <i>P</i><sub>4</sub>, <i>p</i><sub>4</sub>, <i>P</i><sub>6</sub> и <i>p</i><sub>6</sub>.

   б) Докажите, что справедливы следующие рекуррентные соотношения:    <i>P</i><sub>2<i>n</i></sub> = <img width="63" height="51" align="MIDDLE" border="0" src="/storage/problem-media/61335/problem_61335_img_2.gif">,        <i>p</i&...

Метод Ньютона (см. задачу<a href="https://mirolimp.ru/tasks/161328">9.77</a>) не всегда позволяет приблизиться к корню уравнения<i>f</i>(<i>x</i>) = 0. Для многочлена<i>f</i>(<i>x</i>) =<i>x</i>(<i>x</i>- 1)(<i>x</i>+ 1) найдите начальное условие<i>x</i><sub>0</sub>такое, что<i>f</i>(<i>x</i><sub>0</sub>)$\ne$<i>x</i><sub>0</sub>и<i>x</i><sub>2</sub>=<i>x</i><sub>0</sub>.

Докажите, что касательная к графику функции<i>f</i>(<i>x</i>), построенная в точке с координатами(<i>x</i><sub>0</sub>;<i>f</i>(<i>x</i><sub>0</sub>)) пересекает ось<i>Ox</i>в точке с координатой<div align="CENTER"> <i>x</i><sub>0</sub> - <img width="50" height="53" align="MIDDLE" border="0" src="/storage/problem-media/61327/problem_61327_img_2.gif" alt="$\displaystyle {\frac{f(x_0)}{f'(x_0)}}$">. </div>

Назовём <i>геометрико-гармоническим средним</i> чисел <i>a</i> и <i>b</i> общий предел последовательностей {<i>a<sub>n</sub></i>} и {<i>b<sub>n</sub></i>}, построенных по правилу <div align="CENTER"><i>a</i><sub>0</sub> = <i>a,   b</i><sub>0</sub> = <i>b</i>,   <i>a</i><sub><i>n</i>+1</sub> = <img width="60" height="51" align="MIDDLE" border="0" src="/storage/problem-media/61324/problem_61324_img_2.gif">,   <i>b</i><sub><i>n</i>+1</sub> = <img width="53" height="39" align="MIDDLE...

Пусть <i>a</i> и <i>b</i> – два положительных числа, и  <i>a < b</i>.  Определим две последовательности чисел {<i>a<sub>n</sub></i>} и {<i>b</i><sub>n</sub>} формулами: <div align="CENTER"><i>a</i><sub>0</sub> = <i>a, &nbsp b</i><sub>0</sub> = <i>b,   a</i><sub><i>n</i>+1</sub> = <img width="60" height="51" align="MIDDLE" border="0" src="/storage/problem-media/61323/problem_61323_img_2.gif">,   <i>b</i><sub><i>n</i>+1</sub> = <img width="60" height="51" align="MIDDLE" border=&quo...

Пусть <i>a</i> и <i>b</i> – два положительных числа, причём  <i>a < b</i>.  Построим по этим числам две последовательности {<i>a<sub>n</sub></i>} и {<i>b<sub>n</sub></i>} по правилам: <div align="CENTER"><i>a</i><sub>0</sub> = <i>a</i>,   <i>b</i><sub>0</sub> = <i>b</i>,   <i>a</i><sub><i>n</i>+1</sub> = <img width="53" height="39" align="MIDDLE" border="0" src="/storage/problem-media/61322/problem_61322_img_2.gif">,   <i>b</i><sub><i>n</i>+1</sub> = <img width="60" height="...

Решите уравнение$\sqrt{a+\sqrt{a+\sqrt{a+x}}}$=<i>x</i>.

Числа<i>a</i><sub>1</sub>,<i>a</i><sub>2</sub>, ...,<i>a</i><sub>k</sub>таковы, что равенство<div align="CENTER"> $\displaystyle \lim\limits_{n\to\infty}^{}$(<i>x</i><sub>n</sub> + <i>a</i><sub>1</sub><i>x</i><sub>n - 1</sub> +...+ <i>a</i><sub>k</sub><i>x</i><sub>n - k</sub>) = 0 </div>возможно только для тех последовательностей {<i>x</i><sub>n</sub>}, для которых$\lim\limits_{n\to\infty}^{}$<i>x</i><sub>n</sub>= 0. Докажите, что все корни многочлена<div align="CENTER"> <i>P</i>($\displaystyle \lambda$)...

<b>Метод итераций.</b>Для того, чтобы приближенно решить уравнение, допускающее запись<i>f</i>(<i>x</i>) =<i>x</i>, применяется метод итераций. Сначала выбирается некоторое число<i>x</i><sub>0</sub>, а затем строится последовательность {<i>x</i><sub>n</sub>} по правилу<i>x</i><sub>n + 1</sub>=<i>f</i>(<i>x</i><sub>n</sub>)(<i>n</i>$\geqslant$0). Докажите, что если эта последовательность имеет предел<i>x</i>* =$\lim\limits_{n\to\infty}^{}$<i>x</i><sub>n</sub>, и функция<i>f</i>(<i>x</i>) непрерывна, то этот предел является корнем исходного уравнения:<i>f</i&...

К чему будет стремиться последовательность из предыдущей задачи<a href="https://mirolimp.ru/tasks/161297">9.46</a>, если в качестве начального условия выбрать<i>x</i><sub>1</sub>= - 1?

<b>Вавилонский алгоритм вычисления $\sqrt{2}$.</b>Последовательность чисел {<i>x</i><sub>n</sub>} задана условиями:<div align="CENTER"> <i>x</i><sub>1</sub> = 1,        <i>x</i><sub>n + 1</sub> = $\displaystyle {\textstyle\dfrac{1}{2}}$$\displaystyle \left(\vphantom{x_n+\frac{2}{x_n}}\right.$<i>x</i><sub>n</sub> + $\displaystyle {\frac{2}{x_n}}$$\displaystyle \left.\vphantom{x_n+\frac{2}{x_n}}\right)$        (<i>n</i> $\displaystyle \geqslant$ 1). </div>Докажите, что$\lim\limits_{n\to\infty}^{}$<i>x</i><sub>n</sub>=$\sqrt{2}$.

Решите систему: $\left{\vphantom{ \begin{array}{rcl} \hbox{\rm tg\ }x\cdot\hbox{\rm tg\ }z&=... ...box{\rm tg\ }y\cdot\hbox{\rm tg\ }z&=&6,\ x+y+z&=&\pi. \end{array} }\right.$$\begin{array}{rcl} \hbox{\rm tg\ }x\cdot\hbox{\rm tg\ }z&=&3,\ \hbox{\rm tg\ }y\cdot\hbox{\rm tg\ }z&=&6,\ x+y+z&=&\pi. \end{array}$

Пусть  |<i>x</i><sub>1</sub>| ≤ 1  и   |<i>x</i><sub>2</sub>| ≤ 1.  Докажите неравенство   <img align="MIDDLE" src="/storage/problem-media/61288/problem_61288_img_2.gif">

Среди всех решений системы

    <i>x</i>² + <i>y</i>² = 4,

    <i>z</i>² + <i>t</i>² = 9,

    <i>xt + yz</i> = 6

выберите те, для которых величина  <i>x + z</i>  принимает наибольшее значение.

Решите систему

    <i>x</i>² + <i>y</i>² = 1,

    4<i>xy</i>(2<i>y</i>² – 1) = 1.

Докажите, что если <i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>x</i><sub>3</sub> – корни уравнения  <i>x</i>³ + <i>px + q</i> = 0, то   <img align="absmiddle" src="/storage/problem-media/61267/problem_61267_img_2.gif">

При всех значениях параметра <i>a</i> найдите число действительных корней уравнения  <i>x</i>³ – <i>x – a</i> = 0.

Решите уравнение  <i>x</i>³ + <i>x</i> – 2 = 0  подбором и по формуле Кардано.

Докажите равенство <img width="70" height="42" align="MIDDLE" border="0" src="/storage/problem-media/61255/problem_61255_img_2.gif"> + <img width="70" height="42" align="MIDDLE" border="0" src="/storage/problem-media/61255/problem_61255_img_3.gif"> = 1.

Докажите, что график многочлена

  а)  <i>x</i>³ + <i>px</i>;   б)  <i>x</i>³ + <i>px + q</i>;   в)  <i>ax</i>³ + <i>bx</i>² + <i>cx + d</i>

имеет центр симметрии.

Фильтры

Все
1
2
3
4
5
6
7
8
9
10
11
Все
1
2
3
4
5
Локальная подборка